Transform(二)

常见的transforms里的类:

一、Normalize(归一化):

1、归一化是干什么的:

对图像数据进行预处理,以确保输入模型的数据在相同的尺度上

2、为什么需要归一化:

为了消除奇异值,将数据缩放到一个小范围,这样梯度下降得更快,更容易求解

3、transforms.Normalize(mean, std)

将图像的每个通道(RGB,共3个通道)按特定的均值和标准差进行归一化

meanstd 的值是通常在 ImageNet 数据集上计算得出)

python 复制代码
#Normalize
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize=transforms.Normalize(mean,std) #创建归一化工具的实例化对象
img_norm=normalize(img_tensor)
print(img_norm[0][0][0]) #img_norm[0][0][0]获取该单张图像的第一个通道的第一行的第一个像素值
print(img_norm.shape) #CHW
writer.add_image("Normalize_images",img_norm,4,dataformats="CHW")

二、Resize(改变像素的大小)

注意:这里改变的大小是指改变图片的像素值,调整清晰度

resize=transforms.Resize(size) 中的 size 可以是一个元组 (height, width) 或者一个整数

(如果是整数,图像的较短边会被调整到这个值,较长边会保持比例)

python 复制代码
#Resizes
resize=transforms.Resize((700,50)) #注意size参数是()括起来的一对值
img_resize=resize(img_tensor) #输入:PIL Image or Tensor 对应输出的也是PIL Image or Tensor
writer.add_image("Resize_img",img_resize,1)

三、Compose(按顺序应用多个变换)

参数是list of ``Transform`` objects

python 复制代码
trans_resize=transforms.Resize(512)
trans_compose=transforms.Compose([trans_resize,trans_tensor])
img_resize_2=trans_compose(img_PIL)
writer.add_image("Compose",img_resize_2,1)
print(type(img_resize_2))

四、RandomCrop(随意裁剪)

python 复制代码
# RandomCrop
trans_random=transforms.RandomCrop((200,300))
trans_compose_2=transforms.Compose([trans_random,trans_tensor])
for i in range(10):
    img_crop=trans_compose_2(img_PIL)
    writer.add_image("RandomCrop1",img_crop,i)
  • size 参数可以是一个元组 (height, width),表示裁剪的目标大小
  • 每次应用时,裁剪的位置都是随机的,增加了数据的多样性

Resize 是统一调整大小,而 RandomCrop 是随机选择部分区域)

补充:

python 复制代码
from torch.utils.tensorboard import  SummaryWriter
from torchvision import transforms
from PIL import Image

Tips:

多看官方文档

关注输入和输出类型

关注方法需要什么参数

不知道返回值的时候,可以print()或print(type())或debug

相关推荐
云茧5 分钟前
机器学习中的Hello World:线性回归(一)
人工智能·机器学习·线性回归
他们叫我技术总监22 分钟前
从开发者视角深度评测:ModelEngine 与 AI 开发平台的技术博弈
java·人工智能·dubbo·智能体·modelengine
minhuan23 分钟前
构建AI智能体:八十三、当AI开始“失忆“:深入理解和预防模型衰老与数据漂移
人工智能·模型衰老·数据偏移·psi群体稳定性指标·ks统计量检验
AI浩24 分钟前
深入级联不稳定性:从 Lipschitz 连续性视角探讨图像恢复与目标检测的协同作用
人工智能·目标检测·php
笨鸟笃行25 分钟前
人工智能备考——大体题型讲解+1.1.1-1.1.5固定搭配总结
人工智能
大千AI助手26 分钟前
差分隐私随机梯度下降(DP-SGD)详解
人工智能·神经网络·差分隐私·sgd·大千ai助手·dp-sgd·差分隐私随机梯度下降
十三画者33 分钟前
【文献分享】DARKIN:基于蛋白质语言模型的零样本磷酸化位点与暗激酶关联基准测试
人工智能·语言模型·自然语言处理
执笔论英雄1 小时前
【大模型训练】zero 学习及deepseed实战
人工智能·深度学习·学习
大千AI助手1 小时前
分布式奇异值分解(SVD)详解
人工智能·分布式·spark·奇异值分解·svd·矩阵分解·分布式svd
AgeClub1 小时前
当“钢铁护工”进入家庭,Figure 03如何重建老年居家生活?
大数据·人工智能