Transform(二)

常见的transforms里的类:

一、Normalize(归一化):

1、归一化是干什么的:

对图像数据进行预处理,以确保输入模型的数据在相同的尺度上

2、为什么需要归一化:

为了消除奇异值,将数据缩放到一个小范围,这样梯度下降得更快,更容易求解

3、transforms.Normalize(mean, std)

将图像的每个通道(RGB,共3个通道)按特定的均值和标准差进行归一化

meanstd 的值是通常在 ImageNet 数据集上计算得出)

python 复制代码
#Normalize
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize=transforms.Normalize(mean,std) #创建归一化工具的实例化对象
img_norm=normalize(img_tensor)
print(img_norm[0][0][0]) #img_norm[0][0][0]获取该单张图像的第一个通道的第一行的第一个像素值
print(img_norm.shape) #CHW
writer.add_image("Normalize_images",img_norm,4,dataformats="CHW")

二、Resize(改变像素的大小)

注意:这里改变的大小是指改变图片的像素值,调整清晰度

resize=transforms.Resize(size) 中的 size 可以是一个元组 (height, width) 或者一个整数

(如果是整数,图像的较短边会被调整到这个值,较长边会保持比例)

python 复制代码
#Resizes
resize=transforms.Resize((700,50)) #注意size参数是()括起来的一对值
img_resize=resize(img_tensor) #输入:PIL Image or Tensor 对应输出的也是PIL Image or Tensor
writer.add_image("Resize_img",img_resize,1)

三、Compose(按顺序应用多个变换)

参数是list of ``Transform`` objects

python 复制代码
trans_resize=transforms.Resize(512)
trans_compose=transforms.Compose([trans_resize,trans_tensor])
img_resize_2=trans_compose(img_PIL)
writer.add_image("Compose",img_resize_2,1)
print(type(img_resize_2))

四、RandomCrop(随意裁剪)

python 复制代码
# RandomCrop
trans_random=transforms.RandomCrop((200,300))
trans_compose_2=transforms.Compose([trans_random,trans_tensor])
for i in range(10):
    img_crop=trans_compose_2(img_PIL)
    writer.add_image("RandomCrop1",img_crop,i)
  • size 参数可以是一个元组 (height, width),表示裁剪的目标大小
  • 每次应用时,裁剪的位置都是随机的,增加了数据的多样性

Resize 是统一调整大小,而 RandomCrop 是随机选择部分区域)

补充:

python 复制代码
from torch.utils.tensorboard import  SummaryWriter
from torchvision import transforms
from PIL import Image

Tips:

多看官方文档

关注输入和输出类型

关注方法需要什么参数

不知道返回值的时候,可以print()或print(type())或debug

相关推荐
摆烂工程师4 分钟前
Claude Code 落地实践的工作简易流程
人工智能·claude·敏捷开发
CoovallyAIHub5 分钟前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
亚马逊云开发者5 分钟前
得心应手:探索 MCP 与数据库结合的应用场景
人工智能
大明哥_10 分钟前
100 个 Coze 精品案例 - 小红书爆款图文,单篇点赞 20000+,用 Coze 智能体一键生成有声儿童绘本!
人工智能
聚客AI11 分钟前
🚀拒绝试错成本!企业接入MCP协议的避坑清单
人工智能·掘金·日新计划·mcp
rocksun1 小时前
GraphRAG vs. RAG:差异详解
人工智能
一块plus1 小时前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法
txwtech1 小时前
第10.4篇 使用预训练的目标检测网络
人工智能·计算机视觉·目标跟踪
羊小猪~~1 小时前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
roman_日积跬步-终至千里1 小时前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习