ViT模型技术学习

前言

最近多模态模型特别火,模型也越来越小,MiniCPM-2.6只有8B,里面采用的图片编码器是SigLipViT模型,一起从头学习ViT和Transformer!本文记录一下学习过程,所以是自上而下的写,从ViT拆到Transformer。

用Transformer来做图像分类?!

  1. Vision Transformer (ViT)出自ICLR 2021的论文《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》,使用之前做文本任务的Transformer来做图片分类任务
  2. ViT模型的构成主要包含图像切片、图像映射、Transformer模块和分类头

ViT整体工作流程

假设输入图片尺寸image_size是 224 × 224 224 \times 224 224×224,子图大小(patch_size)为16,图片编码维度(hidden_dim)为768,

当1张224*224的图输入ViT后(批大小batch_size=1)会经历:

  1. 图片切片 -- 图片首先被分割为 16 × 16 16 \times 16 16×16大小的子图,总共 ( 224 / / 16 ) × ( 224 / / 16 ) = 14 × 14 = 196 (224//16) \times (224//16)=14 \times 14=196 (224//16)×(224//16)=14×14=196个
  2. 图片映射 -- 子图被分别送到Linear Projection这个模块进行映射,得到大小为[1,768,196]的向量
  3. 变换一下维度便于输入Transformer,所有子图拼成的图片隐向量维度为[1,196,768];
  4. 分类token -- 在输入Transformer前,为了与bert架构统一,也使用一个类似[CLS]的标记,在图片隐向量前面插入一个class_token,最终输入Transformer的向量大小为[1,197,768]
  5. 位置编码 -- 随机初始化的pos_embedding大小也是[1,197,768],加到图片向量上
  6. 输入Transformer,编码器输入输出维度一致,输出的维度是[1,197,768]
  7. 输出分类结果 -- 取class_token对应的输出向量输入分类头

*需要注意的是:分类任务不一定要取class_token对应的向量,也可在最后一个Transformer块的输出接一个global average pooling层再接MLP分类层,特定学习率参数情况下效果类似;ViT是为了和bert架构统一所以加入了class_token

ViT源代码拆解

1. VisionTransformer类的forward()

在torchvision代码中可以找到ViT的torch官方实现

python 复制代码
def forward(self, x: torch.Tensor):
    # 图片切片、图片编码并把图片向量调整为transformer能接受的维度
    x = self._process_input(x)
    n = x.shape[0] # n是batch size
    # 给这个batch的n个图片向量最前面,都加入一个class_token,类似[CLS]
    batch_class_token = self.class_token.expand(n, -1, -1)
    x = torch.cat([batch_class_token, x], dim=1)
                   
    # 图片向量用Transformer的block进行处理
    x = self.encoder(x)
    # 取class_token对应的向量,x是[1,197,768],x[:,0]表示x[:,0,:]
    x = x[:, 0]
    # 输入分类头进行分类任务
    x = self.heads(x)
    return x

2.图片切片与编码------VisionTransformer类的_process_input()

  • ViT框架图里面的Linear Projection模块实际上是用一个nn.Con2d隐式实现的
  • nn.Con2d起到的作用和单独把一个个子图放到Linear层编码是一样的
  • 所以实际上图片编码后的维度为[1,768,14,14]--> [1,196,768]
python 复制代码
    ........
    self.conv_proj = nn.Conv2d(in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size)
def _process_input(self, x: torch.Tensor) -> torch.Tensor:    n, c, h, w = x.shape 
    # 图片维度为(n, c, h, w),n是batchsize,c是图像通道数一般为3,h/w是图像高宽
    p = self.patch_size  # 图片切片大小,例如为16,子图大小为patch_size*patch_size 
    n_h = h // p         # 图片切片,高度维度切的片数
    n_w = w // p         # 图片切片,高度维度切的片数
    # (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
    x = self.conv_proj(x)
    # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w)),进行展平操作
    x = x.reshape(n, self.hidden_dim, n_h * n_w)    
    # Transformer期望的输入维度是(N,S,E),N是batchsize,S是序列长度,E是文本编码隐向量维度
    # 所以把维度变换一下,permute(0,2,1)表示把第0维放最前面,第2维放中间,第1维放后面
    x = x.permute(0, 2, 1) # 得到(n, (n_h * n_w), hidden_dim), n_h * n_w是子图数,类似文本序列长度
    return x

其中,对于卷积操作而言

python 复制代码
self.conv_proj = nn.Conv2d(in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size)
  • 默认hidden_dim=768,patch_size=16,卷积核个数也就是输出的特征图通道数为768
  • 卷积核大小为16,步长也是16,可以保证卷积扫描的时候每次正好对一个子图做运算,子图互相之间不重叠,一个卷积核卷积运算的次数为(224//16)* (224//16)正好是14*14,每个运算值对应一个子图
  • 有768个卷积核,所以输出的大小为(n,768,14,14),对RGB图像而言卷积核也是个[3,16,16]的矩阵
  • RGB图像的卷积如下,RGB分别计算后相加,这只是1/768个卷积核的计算结果,所有结果拼接为矩阵

3. Transformer的Encoder

3.1 Encoder的forward()

ViT使用的是Encoder for sequence to sequence translation

python 复制代码
    ......
    super().__init__()
    # Note that batch_size is on the first dim because
    # we have batch_first=True in nn.MultiAttention() by default
    self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02))  # from BERT
    self.dropout = nn.Dropout(dropout)
    layers: OrderedDict[str, nn.Module] = OrderedDict()
    for i in range(num_layers):
        layers[f"encoder_layer_{i}"] = EncoderBlock(
        	num_heads, 
        	hidden_dim, 
        	mlp_dim, 
        	dropout,
        	attention_dropout,  
        	norm_layer,)
    self.layers = nn.Sequential(layers)
    self.ln = norm_layer(hidden_dim)
def forward(self, input: torch.Tensor):
    torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
    input = input + self.pos_embedding
    return self.ln(self.layers(self.dropout(input)))

3.2 Transformer的Encoder Block

主要包含self_attention结构,在self-attention中每个patch和patch之间计算相似度,学习patch间的关系

python 复制代码
        ......
        super().__init__()
        self.num_heads = num_heads

        # Attention block
        self.ln_1 = norm_layer(hidden_dim)  # 层归一化,是对单个样本在其特征维度(最后一个维度)上进行的归一化
        self.self_attention = nn.MultiheadAttention(
            hidden_dim, num_heads, dropout=attention_dropout, batch_first=True
        )
        self.dropout = nn.Dropout(dropout)

        # MLP block
        self.ln_2 = norm_layer(hidden_dim)
        self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)

    def forward(self, input: torch.Tensor):
        torch._assert(
            input.dim() == 3,
            f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}"
        )
        x = self.ln_1(input)
        x, _ = self.self_attention(x, x, x, need_weights=False)
        x = self.dropout(x)
        x = x + input  # 残差连接

        y = self.ln_2(x)
        y = self.mlp(y)
        return x + y

3.3 Transformer的Encoder Block的MultiheadAttention

关于代码:

  • 多头注意力模块nn.MultiHeadAttention,forward方法在torch.nn.functional中,在这里之前ViT代码中已经统一把向量变换为(L,N,E)的形状

  • q(L,N,E) k(S,N,E) v(S,N,E) output(L,N,E)

  • L is the target

    length, S is the sequence length, H is the number of attention heads,

    N is the batch size, and E is the embedding dimension

  • nn.MultiHeadAttention的attention有一版注释的代码也在源文件中,搜索" multihead attention"往下翻

  • *torchtext.nn.modules.multiheadattention的多头注意力模块代码更简洁一些

下面是torchtext.nn.modules.multiheadattention的多头注意力模块代码:

python 复制代码
# 假设这是在一个类的方法中定义的
    ......
    if self.batch_first:  # 如果是batch_first的先从(N, L, E)变为(L, N, E)形式
        query, key, value = query.transpose(-3, -2), key.transpose(-3, -2), value.transpose(-3, -2)

    # 获取维度信息
    tgt_len, src_len, bsz, embed_dim = (
        query.size(-3),
        key.size(-3),
        query.size(-2),
        query.size(-1)
    )

    # 分别乘qkv矩阵得到qkv
    q, k, v = self.in_proj_container(query, key, value)

    # 确保query的embed_dim可以被head数整除
    assert q.size(-1) % self.nhead == 0, "query's embed_dim must be divisible by the number of heads"
    head_dim = q.size(-1) // self.nhead
    q = q.reshape(tgt_len, bsz * self.nhead, head_dim)

    # 确保key的embed_dim可以被head数整除
    assert k.size(-1) % self.nhead == 0, "key's embed_dim must be divisible by the number of heads"
    head_dim = k.size(-1) // self.nhead
    k = k.reshape(src_len, bsz * self.nhead, head_dim)

    # 确保value的embed_dim可以被head数整除
    assert v.size(-1) % self.nhead == 0, "value's embed_dim must be divisible by the number of heads"
    head_dim = v.size(-1) // self.nhead
    v = v.reshape(src_len, bsz * self.nhead, head_dim)

    # 计算注意力输出和权重
    attn_output, attn_output_weights = self.attention_layer(
        q, k, v,
        attn_mask=attn_mask,
        bias_k=bias_k,
        bias_v=bias_v
    )

    # 将输出重新调整为原始形状
    attn_output = attn_output.reshape(tgt_len, bsz, embed_dim)
    attn_output = self.out_proj(attn_output)

    # 如果是batch_first从(L, N, E)变回去(N, L, E),编码器输入输出形状保持一致
    if self.batch_first:
        attn_output = attn_output.transpose(-3, -2)

    return attn_output, attn_output_weights

3.4 Transformer的Encoder Block的ScaledDotProduct

  • torchtext.nn.modules.multiheadattention的self.attention_layer是ScaledDotProduct
  • query: (L, N * H, E / H) , key: (S, N * H, E / H),self-attantion中L=E
  • 计算注意力权重 : matmul(query,key)
  • 权重归一化:对 attn_output_weights 进行 softmax 归一化时,希望确保每个查询位置(L)对所有键位置(S)的注意力权重之和为 1。因此,我们需要沿着最后一个维度 S 进行 softmax 归一化,即 dim=-1
  • 加权求和:matmul(att_output_weights, value)
python 复制代码
# Scale query
# 变成(N*H,L,E/H)
query, key, value = query.transpose(-2, -3), key.transpose(-2, -3), value.transpose(-2, -3)
query = query * (float(head_dim) ** -0.5)
# Dot product of q, k
#(N*H,L,E/H) ×  (N*H, E/H, S),matmul计算最后2维,也就是[N*H,:,:]×[N*H,:,:],得到[N*H,L,S]
attn_output_weights = torch.matmul(query, key.transpose(-2, -1))
attn_output_weights = torch.nn.functional.softmax(attn_output_weights, dim=-1) # (N*H, L, S)
attn_output_weights = torch.nn.functional.dropout(attn_output_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_output_weights, value) # (N*H, L, E/H)

self-attention的直观解释-b站视频

Attention的解释有一个b站上搬运的视频非常直观,attention可以关注到全局上信息的关联,卷积只能关注到局部的信息

  • 假设图片有4个像素,RGB三个通道,表示起来x是[4,3]的矩阵

  • 如果隐空间维度hidden_dim=2,输入x乘以[3,2]的Wq/Wk/Wv矩阵可以得到[4,2]的Q/K/V向量

  • 计算相似性度量 𝑄 ∙ 𝐾 𝑇 𝑄∙𝐾^𝑇 Q∙KT

  • 注意到每次是向量的点积运算,例如Q的第4行表示q4,K的第4列表示k4,计算的实际上是向量相似度,得到的 𝑄 ∙ 𝐾 𝑇 𝑄∙𝐾^𝑇 Q∙KT是每个像素间的相似度矩阵

  • 在self-attention的计算中涉及到除以√𝑑放缩,否则维度越大雅可比矩阵接近零矩阵梯度消失,详细原理可以在文末知乎专栏中找到

  • 计算softmax进行归一化,因为每一行是一个像素和其它像素的相似度,所以预期是每行概率值相加为1,对列做softmax:

  • 最后乘以V矩阵完成注意力计算:

  • 左边的相似度矩阵可以理解为权重,乘以V矩阵类似加权平均

  • 例如0.23表示第1个像素关注第1个像素的程度,0.33表示第1个像素关注第2个像素的程度

参考链接

  1. b站attention视频讲解:https://www.bilibili.com/video/BV1Ke411X7t7
  2. 知乎解释为什么attention需要除以√𝑑放缩:https://zhuanlan.zhihu.com/p/503321685
相关推荐
吕小明么4 分钟前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
算力魔方AIPC1 小时前
Meta重磅发布Llama 3.3 70B:开源AI模型的新里程碑
人工智能·llama
CSBLOG1 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
边缘计算社区1 小时前
吉快科技荣膺“金边奖·最佳大模型一体机”,引领AI边缘新时代
人工智能·科技
新智元1 小时前
LeCun 八年前神预言,大模型路线再颠覆?OpenAI 宣告:强化学习取得稳定性突破
人工智能·openai
电子海鸥1 小时前
迁移学习--fasttext概述
人工智能·机器学习·迁移学习
因_果_律1 小时前
亚马逊云科技 re:Invent 2024重磅发布!Amazon Bedrock Data Automation 预览版震撼登场
大数据·人工智能·科技·亚马逊云科技·re invent
新智元1 小时前
李飞飞谢赛宁:多模态 LLM「空间大脑」觉醒,惊现世界模型雏形!
人工智能·llm