CUDA:Sobel算子处理

cpp 复制代码
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>

using namespace std;

__global__ void sobel_gpu(unsigned char* in, unsigned char* out,
                          const int Height, const int Width)
{
    int x = threadIdx.x + blockDim.x * blockIdx.x;
    int y = threadIdx.y + blockDim.y * blockIdx.y;


    int index = y * Width + x;
    unsigned char x0, x1, x2, x3, x4, x5, x6, x7, x8;
    int Gx = 0, Gy = 0;


    if(x > 0 && x < Width - 1 && y > 0 && y < Height - 1) {
        x0 = in[(y - 1) * Width + (x - 1)];
        x1 = in[(y - 1) * Width + x];
        x2 = in[(y - 1) * Width + x + 1];


        x3 = in[y * Width + x - 1];
        x4 = in[y * Width + x];
        x5 = in[y * Width + x + 1];


        x6 = in[(y + 1) * Width + (x - 1)];
        x7 = in[(y + 1) * Width + x];
        x8 = in[(y + 1) * Width + (x + 1)];


        Gx = (x0 + 2 * x3 + x6) - (x2 + 2 * x5 + x8);
        Gy = (x0 + 2 * x1 + x2) - (x6 + 2 * x7 + x8);
        out[index] = (abs(Gx) + abs(Gy)) / 2;
    }
}


int main()
{
    cv::Mat img = cv::imread("noise.png", 0);
    int height = img.rows;
    int width = img.cols;


    cv::Mat gaussImg;
    GaussianBlur(img, gaussImg, cv::Size(3,3), 0,0, cv::BORDER_DEFAULT);


    cv::Mat dst_gpu(height, width, CV_8UC1, cv::Scalar(0));


    int memsize = height * width * sizeof(unsigned char);
    unsigned char* in_gpu, *out_gpu;


    cudaMalloc((void**)&in_gpu, memsize);
    cudaMalloc((void**)&out_gpu, memsize);


    dim3 threadsBlocks(32, 32);
    dim3 blocksGrid((width + threadsBlocks.x - 1) / threadsBlocks.x, (height + threadsBlocks.y - 1) / threadsBlocks.y);


    cudaMemcpy(in_gpu, gaussImg.data, memsize, cudaMemcpyHostToDevice);


    sobel_gpu<<<blocksGrid, threadsBlocks>>>(in_gpu, out_gpu, height, width);


    cudaMemcpy(dst_gpu.data, out_gpu, memsize, cudaMemcpyDeviceToHost);


    cv::imwrite("save.png", dst_gpu);


    cudaFree(in_gpu);
    cudaFree(out_gpu);


    printf("Finished \n");
    return 0;
}

CMakeLists.txt配置

cpp 复制代码
cmake_minimum_required(VERSION 3.10)

project(CSobel LANGUAGES CXX CUDA)

add_definitions(-std=c++11)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CUDA_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/build)
set(CMAKE_CXX_FLAGS  "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -O0 -Wfatal-errors -pthread -w -g")


set(OpenCV_DIR ${PROJECT_SOURCE_DIR}/../../3rdparty/opencv3.4.15)

find_package(CUDA REQUIRED)

include_directories(
    ${PROJECT_SOURCE_DIR}
    ${OpenCV_DIR}/include
)

link_directories(
    ${PROJECT_SOURCE_DIR}/lib
    ${OpenCV_DIR}/lib
)

cuda_add_executable(bilateral main.cu)

target_link_libraries(bilateral opencv_world)
相关推荐
aihuangwu8 分钟前
如何把豆包的回答导出
人工智能·ai·deepseek·ds随心转
好奇龙猫10 分钟前
【人工智能学习-AI入试相关题目练习-第十六次】
人工智能·学习
bing.shao14 分钟前
Golang 开发者视角:解读《“人工智能 + 制造” 专项行动》的技术落地机遇
人工智能·golang·制造
LOnghas121114 分钟前
玉米目标检测实战:基于YOLO13-C3k2-RFAConv的优化方案_1
人工智能·目标检测·计算机视觉
量子-Alex24 分钟前
【大模型课程笔记】斯坦福大学CS336 课程环境配置与讲座生成完整指南
人工智能·笔记
冬奇Lab28 分钟前
一天一个开源项目(第9篇):NexaSDK - 跨平台设备端 AI 运行时,让前沿模型在本地运行
人工智能·开源
量子-Alex39 分钟前
【大模型技术报告】Qwen2-VL大模型训练过程理解
人工智能
java1234_小锋1 小时前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
新缸中之脑1 小时前
Imagerouter.io: 免费图像生成API
人工智能
MM_MS1 小时前
Halcon图像点运算、获取直方图、直方图均衡化
图像处理·人工智能·算法·目标检测·计算机视觉·c#·视觉检测