CUDA:Sobel算子处理

cpp 复制代码
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>

using namespace std;

__global__ void sobel_gpu(unsigned char* in, unsigned char* out,
                          const int Height, const int Width)
{
    int x = threadIdx.x + blockDim.x * blockIdx.x;
    int y = threadIdx.y + blockDim.y * blockIdx.y;


    int index = y * Width + x;
    unsigned char x0, x1, x2, x3, x4, x5, x6, x7, x8;
    int Gx = 0, Gy = 0;


    if(x > 0 && x < Width - 1 && y > 0 && y < Height - 1) {
        x0 = in[(y - 1) * Width + (x - 1)];
        x1 = in[(y - 1) * Width + x];
        x2 = in[(y - 1) * Width + x + 1];


        x3 = in[y * Width + x - 1];
        x4 = in[y * Width + x];
        x5 = in[y * Width + x + 1];


        x6 = in[(y + 1) * Width + (x - 1)];
        x7 = in[(y + 1) * Width + x];
        x8 = in[(y + 1) * Width + (x + 1)];


        Gx = (x0 + 2 * x3 + x6) - (x2 + 2 * x5 + x8);
        Gy = (x0 + 2 * x1 + x2) - (x6 + 2 * x7 + x8);
        out[index] = (abs(Gx) + abs(Gy)) / 2;
    }
}


int main()
{
    cv::Mat img = cv::imread("noise.png", 0);
    int height = img.rows;
    int width = img.cols;


    cv::Mat gaussImg;
    GaussianBlur(img, gaussImg, cv::Size(3,3), 0,0, cv::BORDER_DEFAULT);


    cv::Mat dst_gpu(height, width, CV_8UC1, cv::Scalar(0));


    int memsize = height * width * sizeof(unsigned char);
    unsigned char* in_gpu, *out_gpu;


    cudaMalloc((void**)&in_gpu, memsize);
    cudaMalloc((void**)&out_gpu, memsize);


    dim3 threadsBlocks(32, 32);
    dim3 blocksGrid((width + threadsBlocks.x - 1) / threadsBlocks.x, (height + threadsBlocks.y - 1) / threadsBlocks.y);


    cudaMemcpy(in_gpu, gaussImg.data, memsize, cudaMemcpyHostToDevice);


    sobel_gpu<<<blocksGrid, threadsBlocks>>>(in_gpu, out_gpu, height, width);


    cudaMemcpy(dst_gpu.data, out_gpu, memsize, cudaMemcpyDeviceToHost);


    cv::imwrite("save.png", dst_gpu);


    cudaFree(in_gpu);
    cudaFree(out_gpu);


    printf("Finished \n");
    return 0;
}

CMakeLists.txt配置

cpp 复制代码
cmake_minimum_required(VERSION 3.10)

project(CSobel LANGUAGES CXX CUDA)

add_definitions(-std=c++11)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CUDA_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/build)
set(CMAKE_CXX_FLAGS  "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -O0 -Wfatal-errors -pthread -w -g")


set(OpenCV_DIR ${PROJECT_SOURCE_DIR}/../../3rdparty/opencv3.4.15)

find_package(CUDA REQUIRED)

include_directories(
    ${PROJECT_SOURCE_DIR}
    ${OpenCV_DIR}/include
)

link_directories(
    ${PROJECT_SOURCE_DIR}/lib
    ${OpenCV_DIR}/lib
)

cuda_add_executable(bilateral main.cu)

target_link_libraries(bilateral opencv_world)
相关推荐
TG:@yunlaoda360 云老大2 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗3 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
心 爱心 爱3 小时前
Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 论文精读
计算机视觉·3d·异常检测·工业异常检测·三维异常检测·多模态工业异常检测·二维异常检测
兴趣使然黄小黄6 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭6 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t6 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域6 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
开利网络6 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师7 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
熙梦数字化8 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车