题目
链接:leetcode链接
思路分析(前缀和)
根据题意,我们可以将数组看成三个部分
[left] [mid] [right]
我们只需要[left]区间内的元素和等于[right]区间的元素和即可,此时mid就是中心下标
那么我们可以借助前缀和思想,将[left]区间和[right]区间的元素和求出来,就可以很好的方便比较
注意,前缀和算法不仅仅是一种算法,更是一种思想。
看到这里,读者们可能会问,通过前缀和算法为什么可以求出[right]区间的和呢?
当然,用整个数组的和减去[left]区间和mid元素可以得到答案,
但是,这里介绍一种更好的办法
采用后缀和算法,
什么是后缀和算法呢?
顾名思义,将前缀和反过来,我们从数组末尾向前求和就成了后缀和
具象到代码上就是
f----前缀和
g---后缀和
f[i] = f[i-1] + nums[i-1] 注意,这里是nums[i-1]不是nums[i],是因为求的是mid前,不包括mid
g[i] = g[i+1] + nums[i+1]
最后处理好前缀和数组和后缀和数组之后,只需要遍历比较前缀和数组和后缀和数组即可。
代码
C++
int pivotIndex(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
vector<int> g(n);
for(int i = 1;i< n;++i)
f[i] = f[i-1] + nums[i-1];
for(int i = n-2;i>=0;--i)
g[i] = g[i+1] + nums[i+1];
for(int i = 0;i < n;++i)
{
if(f[i] == g[i])
return i;
}
return -1;
}