从0开始深度学习(10)——softmax的简洁实现

同样的,本章将使用torch自带的API简洁的实现softmax回归

1 读取数据

使用自带的DataLoader

python 复制代码
import torch
from torch import nn,optim
import torchvision
from torch.utils import data
from torchvision import transforms,datasets
from torch.utils.data import DataLoader

# 定义超参数
batch_size = 256
learning_rate = 0.01
epochs = 5

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  # 标准化到[-1, 1]区间,加快计算
])

# 加载Fashion-MNIST数据集
train_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=True, download=False, transform=transform)
test_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=False, download=False, transform=transform)

train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

2 定义模型,初始化参数

使用torch自带的nn模型,输入层用Flatten(),因为要把2828的展开成一维,输出层用Linear,前面我们说过,全连接层可以看作线性模型,也符合softmax的特征,输入是784,因为2828展开后是784,输出是10,因为有10和可能预测到的类别

python 复制代码
# 定义模型
net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784,10)
)
# 初始化参数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

3 定义损失函数和优化器

使用torch自带的

python 复制代码
# 损失函数与优化器
criterion = nn.CrossEntropyLoss()  # 使用交叉熵损失,因为它包含了softmax
optimizer = optim.SGD(net.parameters(), lr=learning_rate)

4 训练

python 复制代码
# 训练模型
for epoch in range(epochs):
    net.train()
    running_loss = 0.0
    running_corrects = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = net(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        
        # 计算正确率
        _, preds = torch.max(output, 1)
        running_loss += loss.item() * data.size(0)
        running_corrects += torch.sum(preds == target.data)

        if batch_idx % 10 == 0:# 每训练10步输出一次loss和acc
            epoch_loss = running_loss / ((batch_idx + 1) * batch_size)
            epoch_acc = running_corrects.double() / ((batch_idx + 1) * batch_size)
            print(f'Epoch [{epoch+1}/{epochs}], Step [{batch_idx+1}/{len(train_loader)}], Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')

    # 输出每个epoch的平均损失和正确率
    epoch_loss = running_loss / len(train_dataset)
    epoch_acc = running_corrects.double() / len(train_dataset)
    print(f'Epoch [{epoch+1}/{epochs}] Summary - Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')

5 预测

python 复制代码
# 定义 Fashion-MNIST 标签的文本描述
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

# 预测并显示结果
def predict(net, test_iter, n=6):
    for X, y in test_iter:
        break  # 只取一个批次的数据
    trues = get_fashion_mnist_labels(y)
    preds = get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
    n = min(n, X.shape[0])
    fig, axs = plt.subplots(1, n, figsize=(12, 3))
    for i in range(n):
        axs[i].imshow(X[i].permute(1, 2, 0).squeeze().numpy(), cmap='gray')
        axs[i].set_title(titles[i])
        axs[i].axis('off')
    plt.show()

# 调用预测函数
predict(net, test_iter, n=10)
相关推荐
星期天要睡觉3 分钟前
计算机视觉(opencv)——基于 dlib 关键点定位
人工智能·opencv·计算机视觉
程序边界20 分钟前
AI时代如何高效学习Python:从零基础到项目实战de封神之路(2025升级版)
人工智能·python·学习
研梦非凡41 分钟前
探索3D空间的视觉基础模型系列
人工智能·深度学习·神经网络·机器学习·计算机视觉·3d
gooxi_hui1 小时前
国鑫发布新一代「海擎」服务器 全面兼容国内外主流OAM GPU
人工智能
Gerlat小智1 小时前
【手撕机器学习 04】手撕线性回归:从“蒙眼下山”彻底理解梯度下降
人工智能·机器学习·线性回归
学术小白人1 小时前
IEEE出版 | 2026年计算智能与机器学习国际学术会议(CIML 2026)
人工智能·机器学习
jie*2 小时前
小杰深度学习(four)——神经网络可解释性、欠拟合、过拟合
人工智能·python·深度学习·神经网络·scikit-learn·matplotlib·sklearn
学习是生活的调味剂2 小时前
PEFT实战LoRA微调OpenAI Whisper 中文语音识别
人工智能·whisper·语音识别
weixin_418007603 小时前
使用opencv来识别信用卡的号码
人工智能·opencv·计算机视觉
荼蘼3 小时前
基于 OpenCV + 深度学习的实时人脸检测与年龄性别识别系统
人工智能·深度学习·opencv