【深度学习】交叉熵

**交叉熵(Cross-Entropy)**是信息论中的一个重要概念,也是在机器学习和深度学习中用于分类任务的常见损失函数。它衡量的是两个概率分布之间的差异,特别是模型的预测概率分布与真实分布的差异。

交叉熵最初是从信息论引入的,首先我们先来看一下什么是信息量,什么是熵,什么是相对熵。信息量 用于衡量一个事件发生所携带的信息。信息量用于衡量在一个不确定的环境中,某个事件发生时,能带来多少信息。信息量通常用比特(bit)来表示。对于一个发生概率为 p 的事件,其信息量定义为:

是一个系统中所有可能事件的不确定性或平均信息量的度量。它衡量的是整个系统的平均不确定性。当我们对系统的不确定性越大,熵值就越高。熵越大,表示系统的随机性或混乱程度越高。对于一个离散随机变量 X ,它的熵定义为:

**相对熵(Kullback-Leibler 散度,简称KL散度)**用于衡量两个概率分布之间的差异。它告诉我们,如果我们使用一个概率分布 q 来近似真实的概率分布 p,我们在信息上会有多少额外损失。KL散度越大,说明两个分布的差异越大。如果两个分布完全相同,则 KL 散度为0,表示我们没有任何信息损失。如果两个分布差异很大,则 KL 散度会较大,表示我们需要更多的额外信息来弥补近似分布和真实分布之间的差异。

根据类别数的不同,分为二元交叉熵和类别交叉熵:

相关推荐
2501_9419820510 分钟前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
事变天下26 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手27 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT29 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380236 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹38 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬40 分钟前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
极度畅想41 分钟前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
Dev7z44 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路1 小时前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai