【深度学习】交叉熵

**交叉熵(Cross-Entropy)**是信息论中的一个重要概念,也是在机器学习和深度学习中用于分类任务的常见损失函数。它衡量的是两个概率分布之间的差异,特别是模型的预测概率分布与真实分布的差异。

交叉熵最初是从信息论引入的,首先我们先来看一下什么是信息量,什么是熵,什么是相对熵。信息量 用于衡量一个事件发生所携带的信息。信息量用于衡量在一个不确定的环境中,某个事件发生时,能带来多少信息。信息量通常用比特(bit)来表示。对于一个发生概率为 p 的事件,其信息量定义为:

是一个系统中所有可能事件的不确定性或平均信息量的度量。它衡量的是整个系统的平均不确定性。当我们对系统的不确定性越大,熵值就越高。熵越大,表示系统的随机性或混乱程度越高。对于一个离散随机变量 X ,它的熵定义为:

**相对熵(Kullback-Leibler 散度,简称KL散度)**用于衡量两个概率分布之间的差异。它告诉我们,如果我们使用一个概率分布 q 来近似真实的概率分布 p,我们在信息上会有多少额外损失。KL散度越大,说明两个分布的差异越大。如果两个分布完全相同,则 KL 散度为0,表示我们没有任何信息损失。如果两个分布差异很大,则 KL 散度会较大,表示我们需要更多的额外信息来弥补近似分布和真实分布之间的差异。

根据类别数的不同,分为二元交叉熵和类别交叉熵:

相关推荐
XUA5 小时前
如何在服务器上使用Codex
人工智能
咚咚王者5 小时前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
Mintopia5 小时前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown5 小时前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人6 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
艾莉丝努力练剑6 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone6 小时前
数字沟通之道
人工智能·算法
Together_CZ6 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp7 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v07 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb