【深度学习】交叉熵

**交叉熵(Cross-Entropy)**是信息论中的一个重要概念,也是在机器学习和深度学习中用于分类任务的常见损失函数。它衡量的是两个概率分布之间的差异,特别是模型的预测概率分布与真实分布的差异。

交叉熵最初是从信息论引入的,首先我们先来看一下什么是信息量,什么是熵,什么是相对熵。信息量 用于衡量一个事件发生所携带的信息。信息量用于衡量在一个不确定的环境中,某个事件发生时,能带来多少信息。信息量通常用比特(bit)来表示。对于一个发生概率为 p 的事件,其信息量定义为:

是一个系统中所有可能事件的不确定性或平均信息量的度量。它衡量的是整个系统的平均不确定性。当我们对系统的不确定性越大,熵值就越高。熵越大,表示系统的随机性或混乱程度越高。对于一个离散随机变量 X ,它的熵定义为:

**相对熵(Kullback-Leibler 散度,简称KL散度)**用于衡量两个概率分布之间的差异。它告诉我们,如果我们使用一个概率分布 q 来近似真实的概率分布 p,我们在信息上会有多少额外损失。KL散度越大,说明两个分布的差异越大。如果两个分布完全相同,则 KL 散度为0,表示我们没有任何信息损失。如果两个分布差异很大,则 KL 散度会较大,表示我们需要更多的额外信息来弥补近似分布和真实分布之间的差异。

根据类别数的不同,分为二元交叉熵和类别交叉熵:

相关推荐
阿坡RPA8 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049938 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c11 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清12 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员12 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物12 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技