自注意力机制self-attention中的KV 缓存

在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。

1. KV 缓存的背景

在 Transformer 模型的推理阶段(例如在机器翻译、文本生成等任务中),每生成一个新的 token 时,模型需要重新计算该位置的自注意力分数。由于自注意力机制要求当前查询(Q)与整个输入序列中的键(K)和值(V)进行交互,随着序列长度的增长,计算复杂度会增加。

如果在生成序列时每个步骤都重新计算之前的 K 和 V 矩阵,这会带来较大的冗余计算。KV 缓存就是为了解决这一问题而引入的。

2. KV 缓存的含义

KV 缓存指的是在推理过程中,把先前步骤计算得到的 Key(K)和 Value(V)矩阵 缓存 起来,避免在生成新 token 时重复计算整个序列的 K 和 V。每生成一个新 token,只需要计算当前这个 token 的查询向量(Q)与之前缓存的 K 和 V 进行交互,而不需要重新计算之前的 K 和 V。

3. KV 缓存的工作原理

推理阶段

在生成文本时,Transformer模型是按步生成的(Auto-regressive generation),例如 GPT 模型。在生成每个新 token 时:

  1. 第一步:模型会根据输入的初始序列计算 K 和 V 矩阵,并存储这些矩阵作为缓存。
  2. 后续步骤:当模型生成下一个 token 时,它只需要计算当前这个 token 的 Q 矩阵,然后直接与缓存中的 K 和 V 进行交互计算。这样就避免了重新计算之前所有 token 的 K 和 V,从而提高了生成速度。

缓存更新阶段

随着模型生成新 token,新的 K 和 V 也会加入缓存。缓存中保持了当前序列的所有 K 和 V 信息,保证下一步生成时可以继续使用。

4. KV 缓存的优势

  • 降低计算复杂度:缓存机制使得每次生成新 token 时,只需要计算新的查询向量(Q),而不必重新计算整个序列的 K 和 V,从而降低了时间复杂度,特别是在长序列生成中显得尤为重要。
  • 减少冗余计算:每次只需更新少量的 KV 信息,而不是重复计算先前的 K 和 V。
  • 提升推理效率:尤其是在大模型(如 GPT、T5 等)的应用场景中,通过缓存可以大幅加速推理,提升生成速度。

5. KV 缓存的应用场景

  • 文本生成任务:如 GPT 系列模型、ChatGPT 等生成模型。在逐步生成每一个 token 时,KV 缓存可以加速序列生成,避免冗余计算。
  • 翻译任务:在翻译过程中,生成每一个目标语言的 token 时,利用 KV 缓存可以避免重新计算源语言部分的 K 和 V。
  • 长序列处理:对于长文本或长时间序列数据(如音频、视频分析),KV 缓存可以避免随着序列增长带来的计算量爆炸,极大地提升处理速度。

6. 示例:GPT中的KV缓存

在 GPT 模型生成文本时,例如生成句子 "The cat is on the mat",在生成第一个单词 "The" 的时候,模型会计算 "The" 的 Q、K、V 并缓存起来。在生成下一个单词 "cat" 时,模型只需要计算 "cat" 的 Q,并利用之前缓存的 "The" 的 K 和 V 来计算自注意力分数。依次类推,生成每一个新 token 时,都利用已经缓存的 K 和 V,从而减少不必要的重复计算。

总结:

KV 缓存在自注意力机制中的作用是在推理阶段缓存之前计算过的 Key 和 Value 矩阵,避免在生成新 token 时重复计算,显著提升推理效率,特别是在长序列生成任务中效果明显。这种缓存机制是大模型推理阶段提高性能的关键优化之一。

相关推荐
北京地铁1号线9 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
机器学习之心12 小时前
分解+优化+预测!CEEMDAN-Kmeans-VMD-DOA-Transformer-LSTM多元时序预测
lstm·transformer·kmeans·多元时序预测·双分解
会写代码的饭桶12 小时前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
闲看云起15 小时前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
爆改模型15 小时前
【ICCV2025】计算机视觉|即插即用|ESC:颠覆Transformer!超强平替,ESC模块性能炸裂!
人工智能·计算机视觉·transformer
nju_spy18 小时前
李沐深度学习论文精读(二)Transformer + GAN
人工智能·深度学习·机器学习·transformer·gan·注意力机制·南京大学
跳跳糖炒酸奶20 小时前
第六章、从transformer到nlp大模型:编码器-解码器模型 (Encoder-Decoder)
深度学习·自然语言处理·transformer
胡耀超1 天前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
爆改模型2 天前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer
大嘴带你水论文2 天前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer