【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

Note: 草稿状态,持续更新中,如果有感兴趣,欢迎关注。。。

0. 论文信息

@article{lecun1998gradient,

title={Gradient-based learning applied to document recognition},

author={LeCun, Yann and Bottou, L{'e}on and Bengio, Yoshua and Haffner, Patrick},

journal={Proceedings of the IEEE},

volume={86},

number={11},

pages={2278--2324},

year={1998},

publisher={Ieee}

}

基于梯度的学习在文档识别中的应用

LeNet-5 是一个经典的卷积神经网络(CNN)架构,由 Yann LeCun 等人在 1998 年提出,主要用于手写数字识别任务,特别是在 MNIST 数据集上。

LeNet-5 的设计对后来的卷积神经网络研究产生了深远影响,该模型具有以下几个特点:

  1. 卷积层:LeNet-5 包含多个卷积层,每个卷积层后面通常会跟一个池化层(Pooling Layer),用于提取图像特征并降低特征图的空间维度。

  2. 池化层:在卷积层之后,LeNet-5 使用池化层来降低特征图的空间分辨率,减少计算量,并增加模型的抽象能力。

  3. 全连接层:在卷积和池化层之后,LeNet-5 包含几个全连接层,用于学习特征之间的复杂关系。

  4. 激活函数:LeNet-5 使用了 Sigmoid 激活函数,这是一种早期的非线性激活函数,用于引入非线性,使得网络可以学习复杂的模式。

  5. Dropout:尽管原始的 LeNet-5 并没有使用 Dropout,但后来的研究者在改进模型时加入了 Dropout 技术,以减少过拟合。

  6. 输出层:LeNet-5 的输出层通常使用 Softmax 激活函数,用于进行多分类任务,输出每个类别的概率。

虽然站在2024年看LeNet-5 的模型结构相对简单,但是时间回拨到1998年,彼时SVM这类算法为主的时代,LeNet-5的出现,不仅证明了卷积神经网络在图像识别任务中的有效性,而且为后续深度神经网络研究的发展带来重要启迪作用,使得我们有幸看到诸如 AlexNet、VGGNet、ResNet 等模型的不断推成出新。

2. 论文摘要

3. 研究背景

4. 算法模型

5. 实验效果

6. 代码实现

以MNIST手写字图像识别问题为例子,采用LeNet5模型进行分类,代码如下:

dart 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")


# Define the LeNet-5 model
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)  # 1 input image channel, 6 output channels, 5x5 kernel
        self.pool = nn.MaxPool2d(2, 2)  # pool with window 2x2, stride 2
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)  # 16*4*4 = 256
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)  # flatten the tensor
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# # Initialize the network
# net = LeNet5()

# Initialize the network on GPU
net = LeNet5().to(device)

# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# Data loading
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1000, shuffle=False)

# Train the network
for epoch in range(10):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # for cpu
        # inputs, labels = data
        # for gpu
        inputs, labels = data[0].to(device), data[1].to(device)
        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:  # print every 2000 mini-batches
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0

print('Finished Training')

# Test the network on the test data
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        # # for cpu
        # images, labels = data
        # for gpu
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')

注意:这里使用GPU做简单加速。如果没有GPU,可以关闭对应代码,替换为相应的CPU代码即可。

程序运行后结果如下:

可以看到,在测试数据上的准确率为98.33%!

7. 问题及优化

相关推荐
青云交5 分钟前
Java 大视界 --Java 大数据在智慧农业农产品市场价格预测与种植决策支持中的应用实战
机器学习·智慧农业·数据安全·农业物联网·价格预测·java 大数据·种植决策
萤丰信息6 分钟前
智慧园区系统:开启园区管理与运营的新时代
java·大数据·人工智能·安全·智慧城市·智慧园区
Dfreedom.7 分钟前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数
领航猿1号8 分钟前
全参数DeepSeek(671B)企业部署方案
人工智能·ai-native
链上日记18 分钟前
AIOT:用HealthFi重构全球健康金融体系的蓝海样本
人工智能·重构
大明者省27 分钟前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习
xixixi7777729 分钟前
水印攻击中(鲁棒性攻击、表达攻击、解释攻击)的区别,详细解释清楚
图像处理·人工智能·计算机视觉·数字水印
十三画者1 小时前
【文献分享】利用 GeneTEA 对基因描述进行自然语言处理以进行过表达分析
人工智能·自然语言处理
洞见新研社1 小时前
家庭机器人,从科幻到日常的二十年突围战
大数据·人工智能·机器人
qzhqbb1 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络