LangChain——Embedding 智谱AI

Embedding 嵌入

Embedding嵌入创建一段文本的矢量表示。这很有用,因为这意味着我们可以考虑向量空间中的文本,并执行语义搜索之类的操作,在其中查找向量空间中最相似的文本片段。

LangChain 中的基类 Embeddings 提供了两种方法:一种用于嵌入文档,另一种用于嵌入查询。前者 embed_documents 采用多个文本作为输入,而后者 embed_query 采用单个文本。

embed_documents

embed-documents将文本嵌入为embeddings(向量)。

python 复制代码
embeddings = embeddings_model.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ]
)
len(embeddings), len(embeddings[0])

embed_query

embed_query其实和embed-documents差不多,区别在于embed-query嵌入单段文本,而embed-documents嵌入的是一个文本列表。

python 复制代码
embedded_query = embeddings_model.embed_query("What was the name mentioned in the conversation?")
embedded_query[:5]

官方教程使用的openai的api作为示例,需要付费才能使用,因此我们选择使用国产的智谱ai开源的嵌入模型来进行实验。

首先我们需要获取到智谱AI的api-key,前往 https://bigmodel.cn/)https://bigmodel.cn/注册智普 AI 并生成 API 密钥。完成此操作后,设置 ZHIPUAI_API_KEY 环境变量即可。

然后我们只需要导入ZhipuAIEmbeddings,并且声名所使用的的模型即可。

python3 复制代码
from langchain_community.embeddings import ZhipuAIEmbeddings

embeddings = ZhipuAIEmbeddings(
    model="embedding-3",
)

embed_query嵌入单个文本

python3 复制代码
text = "LangChain is the framework for building context-aware reasoning applications"
single_vector = embeddings_model.embed_query(text)
len(single_vector)

2048

eimbed_documents嵌入多个文本

python3 复制代码
text2 = (
    "LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings_model.embed_documents([text, text2])
print(len(two_vectors), len(two_vectors[0]))

2 2028
相关推荐
档案宝档案管理39 分钟前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT2 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8242 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_2 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年3 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus3 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz3 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究3 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
门框研究员3 小时前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能