24/10/12算法笔记 VGG

VGG特点:

1.深度:非常深

2.卷积核采用3*3,使得网络能够捕捉到更细粒度的图像特征

3.全连接层:使用全连接层来分类

4.使用ReLU激活函数,有助于缓解梯度消失

5.在卷积层和池化层后,使用局部归一化,有助于提高网络训练速度和性能

复制代码
def vgg_block(num_convs,in_channels,out_channels):
    layers = []
    for_ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,
                                kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

问题:

关于代码里面的num_convs怎么选择vgg块的配置

根据任务的复杂性:

  • 更复杂的任务(例如,具有大量类别的图像分类)可能需要更深的网络来捕获更抽象的特征,因此可能选择VGG16或VGG19。

数据集大小:大的选大的,小的选小的(比如vgg11或13)

训练资源,训练时间,泛化能力,网络越深,参数越多,会提高泛化能力,也增加了过拟合风险

相关推荐
百锦再19 小时前
第11章 泛型、trait与生命周期
android·网络·人工智能·python·golang·rust·go
杨浦老苏19 小时前
简单直观的笔记管理器Poznote
笔记·docker·群晖
椰壳也可21 小时前
06_作业基于CubeMx实现按键控制LED灯(裸机)(立芯嵌入式笔记)
笔记·stm32·学习
数新网络1 天前
The Life of a Read/Write Query for Apache Iceberg Tables
人工智能·apache·知识图谱
Yangy_Jiaojiao1 天前
开源视觉-语言-动作(VLA)机器人项目全景图(截至 2025 年)
人工智能·机器人
im_AMBER1 天前
Leetcode 52
笔记·学习·算法·leetcode
gorgeous(๑>؂<๑)1 天前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
坠星不坠1 天前
pycharm如何导入ai大语言模型的api-key
人工智能·语言模型·自然语言处理
周杰伦_Jay1 天前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
王哈哈^_^1 天前
【完整源码+数据集】课堂行为数据集,yolo课堂行为检测数据集 2090 张,学生课堂行为识别数据集,目标检测课堂行为识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计