24/10/12算法笔记 VGG

VGG特点:

1.深度:非常深

2.卷积核采用3*3,使得网络能够捕捉到更细粒度的图像特征

3.全连接层:使用全连接层来分类

4.使用ReLU激活函数,有助于缓解梯度消失

5.在卷积层和池化层后,使用局部归一化,有助于提高网络训练速度和性能

复制代码
def vgg_block(num_convs,in_channels,out_channels):
    layers = []
    for_ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,
                                kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

问题:

关于代码里面的num_convs怎么选择vgg块的配置

根据任务的复杂性:

  • 更复杂的任务(例如,具有大量类别的图像分类)可能需要更深的网络来捕获更抽象的特征,因此可能选择VGG16或VGG19。

数据集大小:大的选大的,小的选小的(比如vgg11或13)

训练资源,训练时间,泛化能力,网络越深,参数越多,会提高泛化能力,也增加了过拟合风险

相关推荐
咚咚王者13 小时前
人工智能之核心技术 深度学习 第九章 框架实操(PyTorch / TensorFlow)
人工智能·pytorch·深度学习
天空属于哈夫克313 小时前
外部群自动化:将 RPA 从“群发工具”进化为私域“情报感知系统”
人工智能·自然语言处理
AI人工智能+13 小时前
联机手写签名识别技术通过采集书写时的压力、速度、轨迹等动态特征,构建独特的“行为指纹“
深度学习·联机手写签名识别·手写签名识别
大模型最新论文速读13 小时前
NCoTS:搜索最优推理路径,改进大模型推理效果
人工智能·深度学习·机器学习·语言模型·自然语言处理
AI视觉网奇13 小时前
ue 安装报错MD-DL ue 安装笔记
笔记·学习·ue5
神经蛙没头脑13 小时前
2026年AI产品榜·全球总榜, 2月3日更新
人工智能·神经网络·机器学习·计算机视觉·语言模型·自然语言处理·自动驾驶
微光闪现13 小时前
实测分享:夏杰语音性能资源深度解析,轻量高效适配全场景
人工智能·语音识别
KeeBoom13 小时前
嵌入式 Linux 应用开发完全手册——阅读笔记14
linux·笔记
彬鸿科技13 小时前
bhSDR Studio/Matlab 入门指南(四):8 通道单音同步收发实验界面全解析
人工智能·matlab·软件无线电
俊哥V13 小时前
AI一周事件(2026年01月28日-02月03日)
人工智能·ai