24/10/12算法笔记 VGG

VGG特点:

1.深度:非常深

2.卷积核采用3*3,使得网络能够捕捉到更细粒度的图像特征

3.全连接层:使用全连接层来分类

4.使用ReLU激活函数,有助于缓解梯度消失

5.在卷积层和池化层后,使用局部归一化,有助于提高网络训练速度和性能

复制代码
def vgg_block(num_convs,in_channels,out_channels):
    layers = []
    for_ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,
                                kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

问题:

关于代码里面的num_convs怎么选择vgg块的配置

根据任务的复杂性:

  • 更复杂的任务(例如,具有大量类别的图像分类)可能需要更深的网络来捕获更抽象的特征,因此可能选择VGG16或VGG19。

数据集大小:大的选大的,小的选小的(比如vgg11或13)

训练资源,训练时间,泛化能力,网络越深,参数越多,会提高泛化能力,也增加了过拟合风险

相关推荐
重启的码农2 分钟前
ggml介绍 (9) 后端调度器 (ggml_backend_sched)
c++·人工智能·神经网络
aneasystone本尊2 分钟前
学习 Coze Studio 的智能体执行逻辑
人工智能
盏灯13 分钟前
Trae SOLO 游戏 —— 🐾🐱🐾猫咪追蝌蚪🐸
人工智能·trae
lisuwen11617 分钟前
AI三国杀:马斯克炮轰苹果“偏袒”OpenAI,Grok与ChatGPT的应用商店战争揭秘
人工智能·chatgpt
暮小暮22 分钟前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt
聚客AI25 分钟前
✅响应时间从8秒到3秒:AI知识库性能优化避坑指南
人工智能·llm·agent
Jinkxs28 分钟前
告别“测试滞后”:AI实时测试工具在敏捷开发中的落地经验
人工智能·测试工具·敏捷流程
七元权29 分钟前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
John_ToDebug1 小时前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan1 小时前
LangGraph从0到1:开启大模型开发新征程
人工智能