24/10/12算法笔记 VGG

VGG特点:

1.深度:非常深

2.卷积核采用3*3,使得网络能够捕捉到更细粒度的图像特征

3.全连接层:使用全连接层来分类

4.使用ReLU激活函数,有助于缓解梯度消失

5.在卷积层和池化层后,使用局部归一化,有助于提高网络训练速度和性能

复制代码
def vgg_block(num_convs,in_channels,out_channels):
    layers = []
    for_ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,
                                kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

问题:

关于代码里面的num_convs怎么选择vgg块的配置

根据任务的复杂性:

  • 更复杂的任务(例如,具有大量类别的图像分类)可能需要更深的网络来捕获更抽象的特征,因此可能选择VGG16或VGG19。

数据集大小:大的选大的,小的选小的(比如vgg11或13)

训练资源,训练时间,泛化能力,网络越深,参数越多,会提高泛化能力,也增加了过拟合风险

相关推荐
历程里程碑2 分钟前
Linux 18 进程控制
linux·运维·服务器·开发语言·数据结构·c++·笔记
AI科技3 分钟前
原创音乐人提升写歌数量,AI编曲软件实现创作周期大幅缩短
人工智能
亲爱的非洲野猪4 分钟前
从约束到互联:LLM生态中Rules、Tools、Skills与MCP的演进史
人工智能
jay神4 分钟前
基于MobileNet花卉识别系统
人工智能·深度学习·计算机视觉·毕业设计·花卉识别
云卓SKYDROID4 分钟前
无人机故障诊断技术模块要点!
人工智能·无人机·高科技·云卓科技·故障模块
m0_603888715 分钟前
VEQ Modality-Adaptive Quantization for MoE Vision-Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
智驱力人工智能5 分钟前
无人机目标检测 低空安全治理的工程实践与价值闭环 无人机缺陷识别 农业无人机作物长势分析系统 森林防火无人机火点实时识别
人工智能·opencv·安全·yolo·目标检测·无人机·边缘计算
zhangfeng11336 分钟前
大语言模型llm 量化模型 跑在 边缘设备小显存显卡 GGUF GGML PyTorch (.pth, .bin, SafeTensors)
人工智能·pytorch·深度学习·语言模型
纤纡.6 分钟前
深度学习环境搭建:CUDA+PyTorch+TorchVision+Torchaudio 一站式安装教程
人工智能·pytorch·深度学习
方见华Richard7 分钟前
《认知几何学:思维如何弯曲意义空间》补充材料
人工智能·经验分享·交互·原型模式·空间计算