24/10/12算法笔记 VGG

VGG特点:

1.深度:非常深

2.卷积核采用3*3,使得网络能够捕捉到更细粒度的图像特征

3.全连接层:使用全连接层来分类

4.使用ReLU激活函数,有助于缓解梯度消失

5.在卷积层和池化层后,使用局部归一化,有助于提高网络训练速度和性能

复制代码
def vgg_block(num_convs,in_channels,out_channels):
    layers = []
    for_ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,
                                kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

问题:

关于代码里面的num_convs怎么选择vgg块的配置

根据任务的复杂性:

  • 更复杂的任务(例如,具有大量类别的图像分类)可能需要更深的网络来捕获更抽象的特征,因此可能选择VGG16或VGG19。

数据集大小:大的选大的,小的选小的(比如vgg11或13)

训练资源,训练时间,泛化能力,网络越深,参数越多,会提高泛化能力,也增加了过拟合风险

相关推荐
飞哥数智坊5 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三5 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯6 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet8 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算9 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心9 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar10 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai10 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI11 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear12 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp