最大池化pytorch

**前置知识:

1、

复制代码
self.maxpool_2=MaxPool2d(kernel_size=3,ceil_mode=True)
复制代码
output=self.maxpool_2(input)

输入:张量的形状是(N,C,H,W)或(C,H,W)

  • Input: (N,C,Hin,Win)or (C,Hin,Win)

  • Output: (N,C,Hout,Wout)or (C,Hout,Wout)

参数:

  • 池化核(池化窗口)大小:kernel_size (Union[ int, Tuple[ int, int] ]) -- the size of the window to take a max over

  • 步长:stride (Union[ int, Tuple[ int, int] ] ) -- the stride of the window. Default value is kernel_size(默认是池化核的大小)

  • 补边缘padding (Union[ int, Tuple[ int, int] ]) -- Implicit negative infinity padding to be added on both sides

  • 取整方式:ceil_mode (bool) -- when True, will use ceil instead of floor to compute the output shape(True:向上取整,保留不足的部分;False:向下取整,去除不足一份的部分)

  • 空洞卷积dilation (Union[ int, Tuple[ int, int] ]) -- a parameter that controls the stride of elements in the window

2、池化的作用:

从特征图中提取最有代表性的特征;防止过拟合,实现降维;保持平移不变性。

(即保留重要特征,同时减少数据量,使模型训练得更快 eg: 1080P高清------>720P高清)

**代码:

1、对单一二维矩阵进行最大池化:

input 单一二维矩阵reshape(变成3D或4D)------>nn 创建神经元------>output 计算并输出

python 复制代码
import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([
    [1,2,0,3,1],
    [0,1,2,3,1],
    [1,2,1,0,0],
    [5,2,3,1,1],
    [2,1,0,1,1] #dtype=torch.float32把整数变成小数
])

input=torch.reshape(input,(-1,1,5,5)) #-1是占位符,后续自动计算batch_size的大小
print(input.shape)

#神经元
class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool_2=MaxPool2d(kernel_size=3,ceil_mode=True) #保留不足的部分,也把它算进去

    def forward(self,input):
        output=self.maxpool_2(input)
        return output

xigua1=Xigua()
output=xigua1(input)
print(output)

2、对RGB图像进行池化:

input 导入并加载RGB图片数据集------>nn 创建神经元------>output 计算并记录

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader=DataLoader(test_set,batch_size=64)

#神经元
class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool_2=MaxPool2d(kernel_size=3,ceil_mode=True) #保留不足的部分,也把它算进去

    def forward(self,input):
        output=self.maxpool_2(input)
        return output

xigua1=Xigua()
writer=SummaryWriter("logs2")
step=1
for imgs,targets in dataloader:
    print(imgs.shape)
    writer.add_images("input",imgs,step)
    imgs=xigua1(imgs)
    print(imgs.shape)
    writer.add_images("output",imgs,step)
    step=step+1
    if step>=3:
        break
writer.close()
相关推荐
lindsayshuo9 分钟前
jetson orin系列开发版安装cuda的gpu版本的opencv
人工智能·opencv
向阳逐梦9 分钟前
ROS机器视觉入门:从基础到人脸识别与目标检测
人工智能·目标检测·计算机视觉
陈鋆34 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot34 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323735 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323736 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker1 小时前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客1 小时前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf21 小时前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉