03.04、化栈为队

03.04、化栈为队

1、题目描述

实现一个 MyQueue 类,该类用两个栈来实现一个队列。

2、解题思路

本题要求使用两个栈来实现一个队列。队列遵循先进先出(FIFO)的原则,而栈遵循后进先出(LIFO)的原则。因此,我们需要两个栈来模拟队列的行为:

  1. pushS:用于存储入队的元素。
  2. popS:用于反转元素顺序,以实现队列的出队操作。

3、解题步骤

  1. 入队操作 (push)
    • 将新元素直接压入到 pushS 栈中。
  2. 出队操作 (pop)
    • 检查 popS 栈是否为空:
      • 如果 popS 为空,将 pushS 中的所有元素逐个弹出并压入 popS。这一步将反转元素的顺序,从而实现队列的 FIFO 行为。
      • 如果 popS 不为空,直接弹出并返回 popS 的栈顶元素。
  3. 获取队首元素 (peek)
    • 类似于 pop 操作,只是我们不弹出 popS 栈的栈顶元素,而是返回它。
  4. 检查队列是否为空 (empty)
    • 队列为空的条件是 pushSpopS 都为空。

4、代码详解

复制代码
class MyQueue {
private:
    stack<int> pushS; // 入队栈
    stack<int> popS;  // 出队栈

public:
    MyQueue() {}

    void push(int x) { pushS.push(x); }

    int pop() {
        // 如果出队栈为空,将入队栈的所有元素移到出队栈中
        if (popS.empty()) {
            while (!pushS.empty()) {
                popS.push(pushS.top());
                pushS.pop();
            }
        }
        int ret = popS.top(); // 获取出队栈的栈顶元素
        popS.pop();           // 弹出该元素
        return ret;
    }

    int peek() {
        // 如果出队栈为空,将入队栈的所有元素移到出队栈中
        if (popS.empty()) {
            while (!pushS.empty()) {
                popS.push(pushS.top());
                pushS.pop();
            }
        }
        return popS.top(); // 返回出队栈的栈顶元素
    }

    bool empty() { return pushS.empty() && popS.empty(); }
};

5、时间复杂度

  • 入队操作 (push):O(1)
  • 出队操作 (pop) :均摊 O(1),因为每个元素最多只会从 pushS 转移到 popS 一次。
  • 获取队首元素 (peek):均摊 O(1)
  • 检查队列是否为空 (empty):O(1)

6、空间复杂度

  • 使用了两个栈存储元素,空间复杂度为 O(n),其中 n 是队列中元素的数量。

这道题通过使用两个栈,成功模拟了队列的行为,展示了栈和队列之间的转换关系。

相关推荐
不能隔夜的咖喱13 分钟前
牛客网刷题(2)
java·开发语言·算法
VT.馒头13 分钟前
【力扣】2721. 并行执行异步函数
前端·javascript·算法·leetcode·typescript
进击的小头30 分钟前
实战案例:51单片机低功耗场景下的简易滤波实现
c语言·单片机·算法·51单片机
肉包_5111 小时前
两个数据库互锁,用全局变量互锁会偶发软件卡死
开发语言·数据库·c++
Trouvaille ~2 小时前
【Linux】UDP Socket编程实战(一):Echo Server从零到一
linux·运维·服务器·网络·c++·websocket·udp
HellowAmy2 小时前
我的C++规范 - 线程池
开发语言·c++·代码规范
czy87874752 小时前
const 在 C/C++ 中的全面用法(C/C++ 差异+核心场景+实战示例)
c语言·开发语言·c++
十五年专注C++开发2 小时前
MinHook:Windows 平台下轻量级、高性能的钩子库
c++·windows·钩子技术·minhook
咖丨喱2 小时前
IP校验和算法解析与实现
网络·tcp/ip·算法
罗湖老棍子2 小时前
括号配对(信息学奥赛一本通- P1572)
算法·动态规划·区间dp·字符串匹配·区间动态规划