03.04、化栈为队

03.04、化栈为队

1、题目描述

实现一个 MyQueue 类,该类用两个栈来实现一个队列。

2、解题思路

本题要求使用两个栈来实现一个队列。队列遵循先进先出(FIFO)的原则,而栈遵循后进先出(LIFO)的原则。因此,我们需要两个栈来模拟队列的行为:

  1. pushS:用于存储入队的元素。
  2. popS:用于反转元素顺序,以实现队列的出队操作。

3、解题步骤

  1. 入队操作 (push)
    • 将新元素直接压入到 pushS 栈中。
  2. 出队操作 (pop)
    • 检查 popS 栈是否为空:
      • 如果 popS 为空,将 pushS 中的所有元素逐个弹出并压入 popS。这一步将反转元素的顺序,从而实现队列的 FIFO 行为。
      • 如果 popS 不为空,直接弹出并返回 popS 的栈顶元素。
  3. 获取队首元素 (peek)
    • 类似于 pop 操作,只是我们不弹出 popS 栈的栈顶元素,而是返回它。
  4. 检查队列是否为空 (empty)
    • 队列为空的条件是 pushSpopS 都为空。

4、代码详解

复制代码
class MyQueue {
private:
    stack<int> pushS; // 入队栈
    stack<int> popS;  // 出队栈

public:
    MyQueue() {}

    void push(int x) { pushS.push(x); }

    int pop() {
        // 如果出队栈为空,将入队栈的所有元素移到出队栈中
        if (popS.empty()) {
            while (!pushS.empty()) {
                popS.push(pushS.top());
                pushS.pop();
            }
        }
        int ret = popS.top(); // 获取出队栈的栈顶元素
        popS.pop();           // 弹出该元素
        return ret;
    }

    int peek() {
        // 如果出队栈为空,将入队栈的所有元素移到出队栈中
        if (popS.empty()) {
            while (!pushS.empty()) {
                popS.push(pushS.top());
                pushS.pop();
            }
        }
        return popS.top(); // 返回出队栈的栈顶元素
    }

    bool empty() { return pushS.empty() && popS.empty(); }
};

5、时间复杂度

  • 入队操作 (push):O(1)
  • 出队操作 (pop) :均摊 O(1),因为每个元素最多只会从 pushS 转移到 popS 一次。
  • 获取队首元素 (peek):均摊 O(1)
  • 检查队列是否为空 (empty):O(1)

6、空间复杂度

  • 使用了两个栈存储元素,空间复杂度为 O(n),其中 n 是队列中元素的数量。

这道题通过使用两个栈,成功模拟了队列的行为,展示了栈和队列之间的转换关系。

相关推荐
Hard but lovely1 天前
C++11: 自定义异常&&标准异常体系&&回顾c异常处理方式
开发语言·c++
jianfeng_zhu1 天前
整数数组匹配
数据结构·c++·算法
Chrikk1 天前
现代化 C++ 工程构建:CMake 与包管理器的依赖治理
开发语言·c++
ozyzo1 天前
例题
c++
yueqingll1 天前
032、数据结构之代码时间复杂度和空间复杂度的判断:从入门到实战
数据结构
smj2302_796826521 天前
解决leetcode第3782题交替删除操作后最后剩下的整数
python·算法·leetcode
世转神风-1 天前
qt-kits-警告:No C++ compiler,无法正常解析工程项目.pro文件
开发语言·c++
王老师青少年编程1 天前
csp信奥赛C++标准模板库STL(12):C++ STL 中的 next_permutation详解
c++·stl·排列·标准模板库·csp·信奥赛·permutation
LYFlied1 天前
【每日算法】LeetCode 136. 只出现一次的数字
前端·算法·leetcode·面试·职场和发展
唯唯qwe-1 天前
Day23:动态规划 | 爬楼梯,不同路径,拆分
算法·leetcode·动态规划