Ultralytics_yolov10目标检测,预处理函数入口

日期:2024.10.7.

随着Ultralytics的更新,yolov5-v11可以统一使用Ultralytics包体,我之前分析的yolov5关键代码定位在Ultralytics中不适用,这篇博客更新一下。

1. Ultralytics包体版本:

bash 复制代码
$ pip list | grep ultralytics
ultralytics                  8.2.101
ultralytics-thop             2.0.8

2. 测试代码

我不确定yolov10的预处理入口和其他yolo版本是否一样,大家感兴趣自己测试一下

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolov10n.pt")  # build a new model from YAML

# Train the model with data augmentation enabled
results = model.train(
    data="your_path1/your_dataset.yaml",
    epochs=150,
    imgsz=320,
    batch=8,
    project='your_path2',
    name='train',
    pretrained=True,
)

3. train阶段预处理入口

  1. 文件:ultralytics/data/base.py
  2. 类:class BaseDataset(Dataset):
  3. 函数:def load_image(self, i, rect_mode=True):

在base.py文件中的---->BaseDataset类---->load_image函数

4. val阶段预处理函数入口

  1. 文件:ultralytics/data/augment.py
  2. 类:class LetterBox:
  3. 函数:def call(self, labels=None, image=None):

在augment.py文件中的---->LetterBox类---->__call__函数

5. 验证方法

5.1. 方法1:

修改预处理方法,查看训练结果存放的文件夹your_path2/train,这个文件夹在第2节的测试代码中指定,文件夹内可以看到train和val阶段的图片

5.2. 方法2

打断点查看进入WarmupForward的图片,打断点的位置:

  1. 文件:ultralytics/engine/trainer.py
  2. 类:class BaseTrainer:
  3. 函数:def _do_train(self, world_size=1):
  4. 在函数中找到for i, batch in pbar:并打断点

对batch中的img,查看或保存到本地就可以验证了。

python 复制代码
images = batch['img']
save_path = "./image_{}.jpg"  # 用你自己的路径

# 遍历每一张图片
for i in range(images.shape[0]):
	# 获取第 i 张图片的 Tensor,形状 [3, 320, 320]
	img_tensor = images[i]
	
	# 调整维度顺序,从 [3, 320, 320] -> [320, 320, 3]
	img_np = img_tensor.permute(1, 2, 0).numpy()
	
	# 将Tensor数值范围从[0, 1](假设这是你的数据范围)转换为[0, 255],并转换为uint8类型
	img_np = (img_np).astype(np.uint8)
	
	# 使用 PIL Image 将 NumPy 数组转换为图像
	img_pil = Image.fromarray(img_np)
	
	# 保存图片
	img_pil.save(save_path.format(i))  # 保存图片路径中带有索引i
相关推荐
极客小云几秒前
【YOLO26教育版目标检测项目详解 - 从零开始掌握YOLO核心原理】
人工智能·yolo·目标检测
一叶龙洲3 分钟前
解决Vmware Ubuntu共享文件夹有时无法识别
ubuntu
Doro再努力3 分钟前
【Linux操作系统07】包管理器与Vim编辑器:从理论到实践的全面解析
linux·编辑器·vim
ar01234 分钟前
可视化AR巡检:工业智能化发展的新引擎
人工智能·ar
沫儿笙6 分钟前
库卡机器人厚板焊接节气设备
网络·人工智能·机器人
2501_933329557 分钟前
Infoseek数字公关AI中台:基于深度学习的全链路智能舆情处置系统架构解析与实战应用
人工智能·深度学习·系统架构
机器学习之心9 分钟前
卷积神经网络(CNN) 与SE(Squeeze-and-Excitation)注意力机制锂电池剩余寿命预测,MATLAB代码
人工智能·matlab·cnn·锂电池剩余寿命预测
tiger11915 分钟前
FPGA 在大模型推理中的应用
人工智能·llm·fpga·大模型推理
AI_567816 分钟前
用Everything+Total Commander管理电脑文件
人工智能·学习
跨境卫士情报站17 分钟前
TikTok跨境电商第二增长曲线:从“跑量”到“跑利润”的精细化运营
大数据·人工智能·产品运营·跨境电商·tiktok·营销策略