Ultralytics_yolov10目标检测,预处理函数入口

日期:2024.10.7.

随着Ultralytics的更新,yolov5-v11可以统一使用Ultralytics包体,我之前分析的yolov5关键代码定位在Ultralytics中不适用,这篇博客更新一下。

1. Ultralytics包体版本:

bash 复制代码
$ pip list | grep ultralytics
ultralytics                  8.2.101
ultralytics-thop             2.0.8

2. 测试代码

我不确定yolov10的预处理入口和其他yolo版本是否一样,大家感兴趣自己测试一下

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolov10n.pt")  # build a new model from YAML

# Train the model with data augmentation enabled
results = model.train(
    data="your_path1/your_dataset.yaml",
    epochs=150,
    imgsz=320,
    batch=8,
    project='your_path2',
    name='train',
    pretrained=True,
)

3. train阶段预处理入口

  1. 文件:ultralytics/data/base.py
  2. 类:class BaseDataset(Dataset):
  3. 函数:def load_image(self, i, rect_mode=True):

在base.py文件中的---->BaseDataset类---->load_image函数

4. val阶段预处理函数入口

  1. 文件:ultralytics/data/augment.py
  2. 类:class LetterBox:
  3. 函数:def call(self, labels=None, image=None):

在augment.py文件中的---->LetterBox类---->__call__函数

5. 验证方法

5.1. 方法1:

修改预处理方法,查看训练结果存放的文件夹your_path2/train,这个文件夹在第2节的测试代码中指定,文件夹内可以看到train和val阶段的图片

5.2. 方法2

打断点查看进入WarmupForward的图片,打断点的位置:

  1. 文件:ultralytics/engine/trainer.py
  2. 类:class BaseTrainer:
  3. 函数:def _do_train(self, world_size=1):
  4. 在函数中找到for i, batch in pbar:并打断点

对batch中的img,查看或保存到本地就可以验证了。

python 复制代码
images = batch['img']
save_path = "./image_{}.jpg"  # 用你自己的路径

# 遍历每一张图片
for i in range(images.shape[0]):
	# 获取第 i 张图片的 Tensor,形状 [3, 320, 320]
	img_tensor = images[i]
	
	# 调整维度顺序,从 [3, 320, 320] -> [320, 320, 3]
	img_np = img_tensor.permute(1, 2, 0).numpy()
	
	# 将Tensor数值范围从[0, 1](假设这是你的数据范围)转换为[0, 255],并转换为uint8类型
	img_np = (img_np).astype(np.uint8)
	
	# 使用 PIL Image 将 NumPy 数组转换为图像
	img_pil = Image.fromarray(img_np)
	
	# 保存图片
	img_pil.save(save_path.format(i))  # 保存图片路径中带有索引i
相关推荐
请你喝好果汁6415 分钟前
python_竞态条件
开发语言·python
正在走向自律7 分钟前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
LuvMyLife8 分钟前
基于Win在VSCode部署运行OpenVINO模型
人工智能·深度学习·计算机视觉·openvino
fancy16616620 分钟前
力扣top100 矩阵置零
人工智能·算法·矩阵
SweerItTer23 分钟前
由镜像源配置错误导致的软件包依赖问题
linux·vscode·ubuntu
gaosushexiangji25 分钟前
基于千眼狼高速摄像机与三色掩模的体三维粒子图像测速PIV技术
人工智能·数码相机·计算机视觉
kedvellek29 分钟前
Linux 内核链表宏的详细解释
linux·运维·链表
dudly30 分钟前
Python 字典键 “三变一” 之谜
开发语言·python
小明.杨1 小时前
Django 中时区的理解
后端·python·django
六bring个六1 小时前
qtcreater配置opencv
c++·qt·opencv·计算机视觉·图形渲染·opengl