Ultralytics_yolov10目标检测,预处理函数入口

日期:2024.10.7.

随着Ultralytics的更新,yolov5-v11可以统一使用Ultralytics包体,我之前分析的yolov5关键代码定位在Ultralytics中不适用,这篇博客更新一下。

1. Ultralytics包体版本:

bash 复制代码
$ pip list | grep ultralytics
ultralytics                  8.2.101
ultralytics-thop             2.0.8

2. 测试代码

我不确定yolov10的预处理入口和其他yolo版本是否一样,大家感兴趣自己测试一下

python 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO("yolov10n.pt")  # build a new model from YAML

# Train the model with data augmentation enabled
results = model.train(
    data="your_path1/your_dataset.yaml",
    epochs=150,
    imgsz=320,
    batch=8,
    project='your_path2',
    name='train',
    pretrained=True,
)

3. train阶段预处理入口

  1. 文件:ultralytics/data/base.py
  2. 类:class BaseDataset(Dataset):
  3. 函数:def load_image(self, i, rect_mode=True):

在base.py文件中的---->BaseDataset类---->load_image函数

4. val阶段预处理函数入口

  1. 文件:ultralytics/data/augment.py
  2. 类:class LetterBox:
  3. 函数:def call(self, labels=None, image=None):

在augment.py文件中的---->LetterBox类---->__call__函数

5. 验证方法

5.1. 方法1:

修改预处理方法,查看训练结果存放的文件夹your_path2/train,这个文件夹在第2节的测试代码中指定,文件夹内可以看到train和val阶段的图片

5.2. 方法2

打断点查看进入WarmupForward的图片,打断点的位置:

  1. 文件:ultralytics/engine/trainer.py
  2. 类:class BaseTrainer:
  3. 函数:def _do_train(self, world_size=1):
  4. 在函数中找到for i, batch in pbar:并打断点

对batch中的img,查看或保存到本地就可以验证了。

python 复制代码
images = batch['img']
save_path = "./image_{}.jpg"  # 用你自己的路径

# 遍历每一张图片
for i in range(images.shape[0]):
	# 获取第 i 张图片的 Tensor,形状 [3, 320, 320]
	img_tensor = images[i]
	
	# 调整维度顺序,从 [3, 320, 320] -> [320, 320, 3]
	img_np = img_tensor.permute(1, 2, 0).numpy()
	
	# 将Tensor数值范围从[0, 1](假设这是你的数据范围)转换为[0, 255],并转换为uint8类型
	img_np = (img_np).astype(np.uint8)
	
	# 使用 PIL Image 将 NumPy 数组转换为图像
	img_pil = Image.fromarray(img_np)
	
	# 保存图片
	img_pil.save(save_path.format(i))  # 保存图片路径中带有索引i
相关推荐
whaosoft-14328 分钟前
51c自动驾驶~合集7
人工智能
都叫我大帅哥33 分钟前
Python的Optional:让你的代码优雅处理“空值”危机
python
Andy杨1 小时前
20250718-1-Kubernetes 应用程序生命周期管理-应用部署、升级、弹性_笔记
linux·docker·容器
曾几何时`3 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
刘晓倩3 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋4 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
写写闲篇儿5 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州6 小时前
Python笔记
开发语言·笔记·python
一个龙的传说6 小时前
linux 常用命令
linux·服务器·zookeeper