快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
GISer_Jing4 小时前
前端GEO优化:AI时代的SEO新战场
前端·人工智能
智链RFID4 小时前
RFID技术:企业效率革命新引擎
大数据·网络·人工智能·rfid
星浩AI4 小时前
10 行代码带你上手 LangChain 智能 Agent
人工智能·后端
文艺理科生5 小时前
Google A2UI 解读:当 AI 不再只是陪聊,而是开始画界面
前端·vue.js·人工智能
LDG_AGI5 小时前
【推荐系统】深度学习训练框架(二十一):DistributedCheckPoint(DCP) — PyTorch分布式模型存储与加载
pytorch·分布式·深度学习
Promise微笑5 小时前
2026年Geo优化的底层逻辑:从语义占位到数字信任的范式重构
大数据·人工智能·搜索引擎·重构·ai搜索
qq_397752935 小时前
智能仓储系统整体架构解析:从仓库规划到自动化落地(工程版)
人工智能·智能仓储·自动化立体仓库·智能仓储整体架构·仓储自动化解决方案·wms 系统·wcs 控制系统
JeffDingAI5 小时前
【CANN训练营】在CANN8.5上体验Hello World开启Ascend C学习
c语言·开发语言·人工智能·学习
三块可乐两块冰5 小时前
【第二十六周】机器学习笔记二十五
人工智能·笔记·机器学习
一招定胜负5 小时前
opencv图片处理常见操作
人工智能·opencv·计算机视觉