快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
love530love12 小时前
Windows 11 下再次成功本地编译 Flash-Attention 2.8.3 并生成自定义 Wheel(RTX 3090 sm_86 专属版)
人工智能·windows·笔记·编译·flash_attn·flash-attn·flash-attention
模型启动机12 小时前
港大联合字节跳动提出JoVA:一种基于联合自注意力的视频-音频联合生成模型
人工智能·ai·大模型
无心水12 小时前
【神经风格迁移:全链路压测】29、AI服务压测实战:构建全链路压测体系与高并发JMeter脚本设计
人工智能·高并发·混沌工程·全链路压测·ai镜像开发·ai镜像·神经风格
怪我冷i12 小时前
Zed编辑器安装与使用Agent Servers(腾讯CodeBuddy、阿里百炼Qwen Code、DeepSeek Cli)
人工智能·编辑器·ai编程·ai写作·zed
AI_Auto12 小时前
智能制造-AI质检六大场景
人工智能·制造
特立独行的猫a13 小时前
AI工具推荐:Google 神秘武器 CodeWiki ---上古项目的终极克星
人工智能
nn在炼金13 小时前
大模型领域负载均衡技术
人工智能·算法·负载均衡
久菜盒子工作室13 小时前
【A股复盘】2025.12.30
人工智能·经验分享·金融
EMQX13 小时前
利用 EMQX 消息队列解决关键物联网消息传递挑战
人工智能·后端·物联网·mqtt·emqx
凌峰的博客13 小时前
基于深度学习的图像修复技术调研总结(下)
人工智能·深度学习