快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
昊昊该干饭了21 分钟前
【金仓数据库征文】从 HTAP 到 AI 加速,KingbaseES 的未来之路
数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
摸鱼仙人~32 分钟前
深度学习优化器和调度器的选择和推荐
人工智能·深度学习
二川bro1 小时前
AI与Web3.0:技术融合
人工智能·web3
CodeJourney.1 小时前
基于DeepSeek与Excel的动态图表构建:技术融合与实践应用
数据库·人工智能·算法·excel
安步当歌1 小时前
【论文#目标检测】Attention Is All You Need
图像处理·人工智能·目标检测·计算机视觉
刘大猫261 小时前
Arthas sc(查看JVM已加载的类信息 )
人工智能·后端·算法
前进的程序员1 小时前
CentOS 系统 DeepSeek 部署
运维·人工智能·centos·deepseek
黎明沐白2 小时前
PyTorch源码编译报错“fatal error: numpy/arrayobject.h: No such file or directory”
人工智能·pytorch·numpy
qp2 小时前
26.OpenCV形态学操作
人工智能·opencv·计算机视觉
小李子-_-2 小时前
生成对抗网络(Generative adversarial network——GAN)
人工智能·神经网络·生成对抗网络