快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
永霖光电_UVLED17 分钟前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG201221 分钟前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI1 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名1 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子1 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail1 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI1 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex1 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害2 小时前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆2 小时前
智能体 - AI 幻觉
人工智能