快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
图扑软件20 分钟前
掌控物体运动艺术:图扑 Easing 函数实践应用
大数据·前端·javascript·人工智能·信息可视化·智慧城市·可视化
newxtc32 分钟前
【商汤科技-注册/登录安全分析报告】
人工智能·科技·安全·web安全·机器学习·行为验证
TechubNews38 分钟前
Vitalik 新文丨以太坊可能的未来:The Splurge
大数据·人工智能·机器学习·web3·区块链
hai4058741 分钟前
卷积、卷积操作、卷积神经网络原理探索
人工智能·神经网络·cnn
熙丫 133814823861 小时前
央国企信创替代,2027年目标百分达成!信创人才评价成标配?
人工智能·物联网
幻风_huanfeng1 小时前
神经网络与深度学习
人工智能·深度学习·神经网络
懒惰才能让科技进步1 小时前
从零学习大模型(十一)-----Lottery Ticket Hypothesis剪枝
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
武子康1 小时前
大数据-197 数据挖掘 机器学习理论 - scikit-learn 泛化能力 交叉验证
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn
jndingxin1 小时前
OpenCV视觉分析之目标跟踪(5)目标跟踪类TrackerMIL的使用
人工智能·opencv·目标跟踪
.信.2 小时前
书生实战营第四期-第三关 Git+InternStudio
linux·人工智能·git·python