快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
良策金宝AI8 分钟前
2025电力工程AI助手:良策金宝AI如何领跑行业数智化转型?
人工智能·工程设计
网络精创大傻24 分钟前
在 AWS 上启动您的 AI 代理:Bedrock、Lambda 和 API 网关
人工智能·云计算·aws
说私域30 分钟前
链动2+1模式、AI智能名片与S2B2C商城小程序:破解直播电商流量转化困局的创新路径
人工智能·小程序
想暴富,学技术1 小时前
AI提示词学习基础(一)
人工智能·学习
萤丰信息1 小时前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
Danceful_YJ1 小时前
32.Bahdanau 注意力
pytorch·python·深度学习
哥布林学者1 小时前
吴恩达深度学习课程二: 改善深层神经网络 第二周:优化算法(四)RMSprop
深度学习·ai
菠菠萝宝1 小时前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
大模型真好玩2 小时前
低代码Agent开发框架使用指南(七)—Coze 数据库详解
人工智能·agent·coze
唐兴通个人2 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能