快速总结ACmix

ACMix:On the Integration of Self-Attention and Convolution

卷积和自注意力模块通常遵循不同的设计范式:

  • 传统卷积根据卷积滤波器权重利用局部感受野上的聚合函数,这些权重在整个特征图中共享。 内在特性对图像处理施加了至关重要的归纳偏差
  • 自注意力模块基于输入特征的上下文应用加权平均操作,其中注意力权重是通过相关像素对之间的相似性函数动态计算的。 这种灵活性使注意力模块能够自适应地关注不同的区域并捕获更多信息丰富的特征。

在文章中,旨在揭示自注意力和卷积之间的更密切关系。

标准卷积运算与自注意力运算对比图

卷积操作:作者将核大小为K*K的卷积操作,进行分解为阶段一与阶段二,在阶段一的操作中存在着与1×1卷积核有着相同的计算构成的一部分。

自注意力机制:作者根据self-attention的原理,同样分解为两个阶段,把第一个阶段中将Q-K-V三个变量计算过程看成1×1的卷积核计算的过程。

总之,上述分析表明,

(1)卷积和自注意力机制实际上共享相同的操作,即通过1×1卷积投影输入特征图,这也是这两个模块的计算开销。

(2)尽管对于捕获语义特征至关重要,但阶段 II 的聚合操作是轻量级的,不需要额外的学习参数。

卷积与自注意力集成

两个模块共享相同的1×1的卷积操作,重复使用计算后的特征图进行不同的聚合操作,最后将两个路径的输出加在一起,并由学习的参数进行控制比例。

论文贡献:

(1)揭示了自注意力和卷积之间强烈的潜在关系,为理解这两个模块之间的联系以及设计新的学习范式提供了新的视角。

(2)提出了一种优雅的自注意力和卷积模块的集成方式,它兼具两者的优点。 经验证据表明,混合模型始终优于纯卷积或自注意力模型。

相关推荐
张较瘦_1 分钟前
[论文阅读] AI + 软件工程 | 告别“大海捞针”:LLM+自然语言摘要,破解多仓库微服务漏洞定位难题
论文阅读·人工智能·软件工程
Skrrapper4 分钟前
【大模型开发之数据挖掘】1. 介绍数据挖掘及其产生与发展
人工智能·数据挖掘
rafael(一只小鱼)4 分钟前
gemini使用+部署教程
java·人工智能·ai·go
Mr. zhihao6 分钟前
深入浅出解析 Word2Vec:词向量的训练与应用
人工智能·自然语言处理·word2vec
南极星10058 分钟前
OPENCV(python)--初学之路(十五)Shi-Tomasi 角点检测和追踪的良好特征和SIFT简介
人工智能·opencv·计算机视觉
skywalk81638 分钟前
LLM API Gateway:使用Comate Spec Mode创建大模型调用中转服务器
服务器·人工智能·gateway·comate
却道天凉_好个秋9 分钟前
OpenCV(三十九):Harris角点检测
人工智能·opencv·计算机视觉
谷粒.9 分钟前
AI芯片战争:NVIDIA、AMD、Intel谁将主宰算力市场?
运维·网络·人工智能·测试工具·开源·自动化
爱学习的张大10 分钟前
大话机器学习-1.神经网络
人工智能·神经网络·机器学习
热点速递10 分钟前
AI竞争升级:OpenAI在三场“战争”中拉响红色警报,全力聚焦ChatGPT!
人工智能·chatgpt