AcWing 905:区间选点 ← 贪心算法

【题目来源】
https://www.acwing.com/problem/content/907/

【题目描述】
给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。

【输入格式】
第一行包含整数 N,表示区间数。
接下来 N 行,每行包含两个整数 ai,bi,表示一个区间的两个端点。

【输出格式】
输出一个整数,表示所需的点的最小数量。

【数据范围】
1≤N≤10^5 ,
−10^9≤ai≤bi≤10^9

【输入样例】
3
-1 1
2 4
3 5

【输出样例】
2

【算法分析】
★ 区间问题,一般来说先按右端点的值从小到大排序。选取右端点的算法价值,在于其可能位于尽可能多的区间内。
★ 贪心算法问题,难点在于证明其局部最优解就是全局最优解。一种常见的证明思路就是:若证 Local = Global,等价于证明 Local ≤ Global 及 Local ≥ Global。
★ 针对本题,若设最优解为 ans 个点,贪心算法求出的解为 cnt 个点。若要证明贪心算法的局部最优解就是全局最优解,针对本题本质上就是证明 ans = cnt 即可。证明过程如下:
(1)因为 ans 是最优解,所以 ans ≤ cnt。
(2)据贪心算法思想,每次让选取的点数加 1 的区间一定不相交,由于贪心算法求出的点数为 cnt,故共计 cnt 个这样的区间。为了覆盖这 cnt 个区间,至少需要 cnt 个点。所以 ans ≥ cnt。

(3)由 ans ≤ cnt 及 ans ≥ cnt,可证 ans = cnt。

【算法代码】

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;

const int inf=0x3f3f3f3f;
const int maxn=1e5+5;

struct Scope {
    int le,ri;
} a[maxn];

bool up(Scope u,Scope v) {
    return u.ri<v.ri;
}

int main() {
    int n;
    cin>>n;
    for(int i=0; i<n; i++) {
        cin>>a[i].le>>a[i].ri;
    }
    sort(a,a+n,up);

    int ans=0;
    int t_ri=-inf;
    for(int i=0; i<n; i++)
        if(t_ri<a[i].le) {
            ans++;
            t_ri=a[i].ri;
        }
    cout<<ans<<endl;

    return 0;
}

/*
in:
3
-1 1
2 4
3 5

out:
2
*/

【参考文献】
https://www.acwing.com/solution/content/16905/
https://www.acwing.com/video/335/
https://www.acwing.com/file_system/file/content/whole/index/content/9846312/

相关推荐
会唱歌的小黄李1 天前
【算法】贪心算法入门
算法·贪心算法
不喜欢学数学er2 天前
第二十八天:贪心算法part02(第八章)
算法·贪心算法
一只鱼^_3 天前
牛客周赛 Round 99
java·数据结构·c++·算法·贪心算法·动态规划·近邻算法
让我们一起加油好吗6 天前
【基础算法】贪心 (四) :区间问题
c++·算法·贪心算法·洛谷
霖檬ing6 天前
K8s——配置管理(1)
java·贪心算法·kubernetes
vortex57 天前
算法设计与分析:分治、动态规划与贪心算法的异同与选择
算法·贪心算法·动态规划
_Coin_-7 天前
算法训练营DAY29 第八章 贪心算法 part02
算法·贪心算法
_Coin_-7 天前
算法训练营DAY27 第八章 贪心算法 part01
算法·贪心算法
AI扶我青云志10 天前
贪心算法(Greedy Algorithm)
贪心算法
让我们一起加油好吗11 天前
【基础算法】贪心 (二) :推公式
数据结构·数学·算法·贪心算法·洛谷