Series数据去重

目录

准备数据

Series数据去重

DataFrame数据和Series数据去重对比


pandas中,Series.drop_duplicates(keep=, inplace=)方法用于删除Series对象中的重复值。

  1. keep

    1. 决定保留哪些重复值。可以取以下三个值之一:

      • 'first'(默认值):保留第一次出现的重复值。

      • 'last':保留最后一次出现的重复值。

      • False:删除所有重复值。

  2. inplace

    1. 这是一个布尔值参数。如果为True,则直接在原始Series上进行修改,不会返回新的Series。如果为False(默认值),则会返回一个新的Series,原始的Series保持不变。

准备数据

复制代码
import pandas as pd
df = pd.read_csv("../data/b_LJdata.csv")
df.head()

Series数据去重

  1. 对 朝向 构成的 Series对象 去重, 保留第一条, 不影响原始对象

    1 对 朝向 构成的 Series对象 去重, 保留第一条, 不影响原始对象

    1.1 准备数据

    chaoxiang_series = df.head()['朝向']
    print('------------ 去重前 ----------------')
    print(chaoxiang_series)

    1.2 去重

    new_series = chaoxiang_series.drop_duplicates(keep='first', inplace=False)
    print('==================')
    print(new_series)
    print('==================')

    print('------------ 去重后 ----------------')
    print(chaoxiang_series)

2) 对 朝向 构成的 Series对象 去重, 保留最后一条, 不影响原始对象

复制代码
# 2 对 朝向 构成的 Series对象 去重, 保留最后一条, 不影响原始对象
# 2.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 2.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='last', inplace=False)
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

3) 对 朝向 构成的 Series对象 去重, 删除所有重复, 不影响原始对象

复制代码
# 3 对 朝向 构成的 Series对象 去重, 删除所有重复, 不影响原始对象
# 3.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 3.2 去重
new_series = chaoxiang_series.drop_duplicates(keep=False, inplace=False)
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

4) 对 朝向 构成的 Series对象 去重, 保留第一条, 影响原始对象

复制代码
# 4 对 朝向 构成的 Series对象 去重, 保留第一条, 影响原始对象
# 4.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 4.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='first', inplace=True)
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

5) 对 朝向 构成的 Series对象 去重, 保留最后一条, 影响原始对象

复制代码
# 5 对 朝向 构成的 Series对象 去重, 保留最后一条, 影响原始对象
# 5.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 5.2 去重
new_series = chaoxiang_series.drop_duplicates(keep='last', inplace=True)
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

6) 对 朝向 构成的 Series对象 去重, 删除所有重复, 影响原始对象

复制代码
# 6 对 朝向 构成的 Series对象 去重, 删除所有重复, 影响原始对象
# 6.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 6.2 去重
new_series = chaoxiang_series.drop_duplicates(keep=False, inplace=True)
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

*7)*简化

复制代码
# 7 简化
# 7.1 准备数据
chaoxiang_series = df.head()['朝向']
print('------------ 去重前 ----------------')
print(chaoxiang_series)

# 7.2 去重
new_series = chaoxiang_series.drop_duplicates()
print('==================')
print(new_series)
print('==================')

print('------------ 去重后 ----------------')
print(chaoxiang_series)

DataFrame数据和Series数据去重对比

DataFrame数据去重,最终呈现的是数据集合

复制代码
temp_df = df.head().copy()

# 对df所有列去重, 当前df没有重复的行数据
print(temp_df.drop_duplicates())
print("=================================")
# 根据指定列对df去重, 默认保留第一条数据
# 第1行和第5行、第2行和第3行重复
print(temp_df.drop_duplicates(subset=['户型', '朝向']))

Series数据去重,最终呈现是一列数据

复制代码
temp_df = df.head().copy()

# 默认保留第一条数据
print(temp_df.drop_duplicates())
print("===========================")
print(temp_df[['户型','朝向']].drop_duplicates())
相关推荐
想回家的一天1 小时前
Go1.25的源码分析-src/runtime/runtime1.go(GMP)
数据库·redis·缓存
阿里云大数据AI技术2 小时前
鹰角网络基于阿里云EMR Serverless StarRocks的实时分析工程实践
数据库·数据分析
集成显卡2 小时前
使用 Google 开源 AI 工具 LangExtract 进行结构化信息抽取
python·google·openai
久笙&2 小时前
对象存储解决方案:MinIO 的架构与代码实战
数据库·python·架构
码luffyliu3 小时前
MySQL:MVCC机制及其在Java秋招中的高频考点
java·数据库·mysql·事务·并发·mvcc
水涵幽树3 小时前
MySQL 时间筛选避坑指南:为什么格式化字符串比较会出错?
数据库·后端·sql·mysql·database
不甘懦弱3 小时前
阿里云搭建flask服务器
服务器·python·flask
PythonicCC3 小时前
Django中的MVC和MVT模式
数据库·django·mvc
赵英英俊3 小时前
Python day51
人工智能·pytorch·python
律品3 小时前
pytest的前置与后置
开发语言·python·pytest