初识CNN

一、卷积网络与传统网络的区别

1. 传统的是二维的,特征很多,卷积是三维的,将图片直接输入

二、整体架构

输入层->卷积层->池化层->全连接层

三、卷积做了什么事

1、

将图片分成一块一块,如上图所示,原图片是55 3,5是长,5是宽,3是深度(之所以是3是因为RGB,三个通道),分类以33为一块,3个通道的矩阵分别与flter内积得到三个值,再相加,得到一个值后,再加上一个bias,然后输出,结果见上图,不同的通道filter不同,即一个filter是一个卷积内核,33(前面两个三自己定)*3(必须与输入数据的深度相同),旁边灰色的0是用来填充的,这样原本是边界的值不再是边界,增加使用的概论。

2、特征图的个数

如上图所示,我们得到了两个28*28的两个特征图,说明有两个filter

3.堆叠的卷积层

如上图所示,多层卷积的意思是在提取出的特征图上再使用卷积。第一次卷积用55 3,之所以是3 ,是因为前面的深度是3,用了6个卷积核,得到2828 6的特征;第二次卷积用了55 6的卷积核,之所以是6是因为前面的深度是6,用了10个卷积核,得到242410的特征。

4.卷积层涉及的参数

滑动窗口步长越小,卷积核尺寸越小,粒度越细,反之越粗。边缘填充上面已经说明,即填充0,卷积核个数代表特征图个数

5、卷积计算结果公式

题目:假设数据是3232 3的图像,用10个553的卷积核,请问有多少个权重参数?

答:553*10=750,750+10=760()需要加上偏置值

注意,卷积参数共享

四、池化层

如图所示的是最大池化层,它起到一个缩小长和宽的作用,进行筛选过滤,但不能改变特征数,最常用的是最大池化,即选择权重最高的。其过程没有涉及矩阵的运算

五、举例说明

如图所示,CONV即卷积,RELU是激活函数,POOL是池化层,最后,假设我们得到了3232 10的特征图,最后再将其拉成102400*1的向量,再使用【10240,5】的全连接层,进行分类。其中,只有进行矩阵运算的才算一层,在该图中有6次卷积,1次全连接涉及矩阵运算,故有6+1=7层

相关推荐
百***354835 分钟前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6661 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...1 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手1 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式2 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元2 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI3 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来3 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型3 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网3 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动