ES操作指南

Creating a text file with the described Elasticsearch operations.

es_operations = """

Elasticsearch 基本操作语法:

  1. 索引文档 (Index Documents):

自动生成 ID:

POST /index_name/_doc

{

"field1": "value1",

"field2": "value2"

}

指定 ID:

PUT /index_name/_doc/1

{

"field1": "value1",

"field2": "value2"

}

  1. 获取文档 (Get Documents):

按 ID 获取:

GET /index_name/_doc/1

  1. 更新文档 (Update Documents):

部分更新文档:

POST /index_name/_update/1

{

"doc": {

"field2": "new_value"

}

}

  1. 删除文档 (Delete Documents):

按 ID 删除:

DELETE /index_name/_doc/1

  1. 查询文档 (Search Documents):

Match 查询:

GET /index_name/_search

{

"query": {

"match": {

"field1": "value"

}

}

}

Term 查询:

GET /index_name/_search

{

"query": {

"term": {

"field1": "exact_value"

}

}

}

Bool 查询:

GET /index_name/_search

{

"query": {

"bool": {

"must": [

{ "match": { "field1": "value" } },

{ "term": { "field2": "exact_value" } }

],

"must_not": [

{ "term": { "field3": "value_to_exclude" } }

],

"should": [

{ "match": { "field4": "optional_value" } }

]

}

}

}

{

"multi_match": {

"query": "search text",

"fields": ["field1", "field2", "field3"]

}

}

  1. 范围查询 (Range Queries):

GET /index_name/_search

{

"query": {

"range": {

"timestamp": {

"gte": "2024-01-01",

"lte": "2024-12-31"

}

}

}

}

  1. 聚合查询 (Aggregations):

按字段分组 (Terms Aggregation):

GET /index_name/_search

{

"size": 0,

"aggs": {

"group_by_field1": {

"terms": {

"field": "field1.keyword"

}

}

}

}

统计 (Stats Aggregation):

GET /index_name/_search

{

"size": 0,

"aggs": {

"field1_stats": {

"stats": {

"field": "field1"

}

}

}

}

  1. 排序 (Sort):

GET /index_name/_search

{

"query": {

"match_all": {}

},

"sort": [

{ "field1": { "order": "asc" } },

{ "field2": { "order": "desc" } }

]

}

  1. 分页 (Pagination):

GET /index_name/_search

{

"query": {

"match_all": {}

},

"from": 0,

"size": 10

}

  1. 批量操作 (Bulk Operations):

POST /_bulk

{ "index": { "_index": "index_name", "_id": "1" } }

{ "field1": "value1" }

{ "delete": { "_index": "index_name", "_id": "2" } }

{ "update": { "_index": "index_name", "_id": "3" } }

{ "doc": { "field2": "new_value" } }

  1. 滚动查询 (Scroll Query):

POST /index_name/_search?scroll=1m

{

"size": 100,

"query": {

"match_all": {}

}

}

使用 _scroll_id 获取后续批次数据:

POST /_search/scroll

{

"scroll": "1m",

"scroll_id":"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAABbZjaFl1N3dLcmJNTE1GZ1BQOGZqZ3cAAAAAAA"

}

  1. 删除索引 (Delete Index):

DELETE /index_name

相关推荐
CRzkHbaXTmHw18 分钟前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe39 分钟前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿1 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿2 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1212 小时前
已有安全措施确认(上)
大数据·网络
人道领域3 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_12498707534 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader4 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
零售ERP菜鸟4 小时前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯