ES操作指南

Creating a text file with the described Elasticsearch operations.

es_operations = """

Elasticsearch 基本操作语法:

  1. 索引文档 (Index Documents):

自动生成 ID:

POST /index_name/_doc

{

"field1": "value1",

"field2": "value2"

}

指定 ID:

PUT /index_name/_doc/1

{

"field1": "value1",

"field2": "value2"

}

  1. 获取文档 (Get Documents):

按 ID 获取:

GET /index_name/_doc/1

  1. 更新文档 (Update Documents):

部分更新文档:

POST /index_name/_update/1

{

"doc": {

"field2": "new_value"

}

}

  1. 删除文档 (Delete Documents):

按 ID 删除:

DELETE /index_name/_doc/1

  1. 查询文档 (Search Documents):

Match 查询:

GET /index_name/_search

{

"query": {

"match": {

"field1": "value"

}

}

}

Term 查询:

GET /index_name/_search

{

"query": {

"term": {

"field1": "exact_value"

}

}

}

Bool 查询:

GET /index_name/_search

{

"query": {

"bool": {

"must": [

{ "match": { "field1": "value" } },

{ "term": { "field2": "exact_value" } }

],

"must_not": [

{ "term": { "field3": "value_to_exclude" } }

],

"should": [

{ "match": { "field4": "optional_value" } }

]

}

}

}

{

"multi_match": {

"query": "search text",

"fields": ["field1", "field2", "field3"]

}

}

  1. 范围查询 (Range Queries):

GET /index_name/_search

{

"query": {

"range": {

"timestamp": {

"gte": "2024-01-01",

"lte": "2024-12-31"

}

}

}

}

  1. 聚合查询 (Aggregations):

按字段分组 (Terms Aggregation):

GET /index_name/_search

{

"size": 0,

"aggs": {

"group_by_field1": {

"terms": {

"field": "field1.keyword"

}

}

}

}

统计 (Stats Aggregation):

GET /index_name/_search

{

"size": 0,

"aggs": {

"field1_stats": {

"stats": {

"field": "field1"

}

}

}

}

  1. 排序 (Sort):

GET /index_name/_search

{

"query": {

"match_all": {}

},

"sort": [

{ "field1": { "order": "asc" } },

{ "field2": { "order": "desc" } }

]

}

  1. 分页 (Pagination):

GET /index_name/_search

{

"query": {

"match_all": {}

},

"from": 0,

"size": 10

}

  1. 批量操作 (Bulk Operations):

POST /_bulk

{ "index": { "_index": "index_name", "_id": "1" } }

{ "field1": "value1" }

{ "delete": { "_index": "index_name", "_id": "2" } }

{ "update": { "_index": "index_name", "_id": "3" } }

{ "doc": { "field2": "new_value" } }

  1. 滚动查询 (Scroll Query):

POST /index_name/_search?scroll=1m

{

"size": 100,

"query": {

"match_all": {}

}

}

使用 _scroll_id 获取后续批次数据:

POST /_search/scroll

{

"scroll": "1m",

"scroll_id":"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAABbZjaFl1N3dLcmJNTE1GZ1BQOGZqZ3cAAAAAAA"

}

  1. 删除索引 (Delete Index):

DELETE /index_name

相关推荐
zskj_qcxjqr4 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人
洛克大航海7 小时前
Ubuntu安装Hbase
大数据·linux·数据库·ubuntu·hbase
橘子在努力7 小时前
【橘子ES】如何本地调试ES源码
elasticsearch·搜索引擎
GIOTTO情8 小时前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
ApacheSeaTunnel9 小时前
新兴数据湖仓手册·从分层架构到数据湖仓架构(2025):数据仓库分层的概念与设计
大数据·数据仓库·开源·数据湖·dataops·白鲸开源·底层技术
落雪财神意9 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
柳贯一(逆流河版)9 小时前
ElasticSearch 实战:全文检索与数据聚合分析的完整指南
大数据·elasticsearch·全文检索
白鲸开源9 小时前
最佳实践:基于Apache SeaTunnel从MySQL同步到PostgreSQL
大数据·mysql·postgresql
QYResearch9 小时前
2025年全球移动变电站市场占有率及行业竞争格局分析报告
大数据
字节跳动数据平台9 小时前
为何底层数据湖决定了 AI Agent 的上限?
大数据