深度学习 | Pytorch的GPU版本查看GPU是否可用、GPU版本、GPU数量

新建文件test.py复制如下内容运行即可。注意环境要选择正确

py 复制代码
import torch

# 检查 GPU 是否可用
is_cuda_available = torch.cuda.is_available()
print(f"CUDA 可用: {is_cuda_available}")

if is_cuda_available:
    # 获取 GPU 数量
    gpu_count = torch.cuda.device_count()
    print(f"GPU 数量: {gpu_count}")

    # 获取每个 GPU 的名称
    for i in range(gpu_count):
        gpu_name = torch.cuda.get_device_name(i)
        print(f"GPU {i} 名称: {gpu_name}")

    # 获取当前 GPU 的索引
    current_device = torch.cuda.current_device()
    print(f"当前使用的 GPU 索引: {current_device}")
    
    # 获取当前 GPU 的名称
    current_gpu_name = torch.cuda.get_device_name(current_device)
    print(f"当前 GPU 名称: {current_gpu_name}")
else:
    print("没有可用的 GPU。")

运行结果示例和截图

如果你的系统上有可用的 GPU,运行上述代码后,你将看到类似以下的输出:

py 复制代码
CUDA 可用: True
GPU 数量: 2
GPU 0 名称: NVIDIA GeForce GTX 1080 Ti
GPU 1 名称: NVIDIA GeForce GTX 1070
当前使用的 GPU 索引: 0
当前 GPU 名称: NVIDIA GeForce GTX 1080 Ti
如果没有可用的 GPU,输出将显示:

CUDA 可用: False
没有可用的 GPU。
这样,你就可以轻松获取到 GPU 的信息了!
相关推荐
亚里随笔10 分钟前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
牛客企业服务30 分钟前
AI面试实用性解析:不是“能不能用”,而是“怎么用好”
人工智能·面试·职场和发展
MicroTech20251 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
救救孩子把1 小时前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap
趣知岛1 小时前
AI是否能代替从业者
人工智能
allan bull2 小时前
在节日中寻找平衡:圣诞的欢乐与传统节日的温情
人工智能·学习·算法·职场和发展·生活·求职招聘·节日
土豆12502 小时前
程序员约会指南:从代码到爱情的完美编译
人工智能
Coder_Boy_2 小时前
SpringAI与LangChain4j的智能应用-(实践篇2)
人工智能·springboot·aiops·langchain4j
love530love2 小时前
【笔记】ComfyUI “OSError: [WinError 38] 已到文件结尾” 报错解决方案
人工智能·windows·python·aigc·comfyui·winerror 38
咕噜企业分发小米2 小时前
腾讯云向量数据库HNSW索引如何更新?
人工智能·算法·腾讯云