深度学习 | Pytorch的GPU版本查看GPU是否可用、GPU版本、GPU数量

新建文件test.py复制如下内容运行即可。注意环境要选择正确

py 复制代码
import torch

# 检查 GPU 是否可用
is_cuda_available = torch.cuda.is_available()
print(f"CUDA 可用: {is_cuda_available}")

if is_cuda_available:
    # 获取 GPU 数量
    gpu_count = torch.cuda.device_count()
    print(f"GPU 数量: {gpu_count}")

    # 获取每个 GPU 的名称
    for i in range(gpu_count):
        gpu_name = torch.cuda.get_device_name(i)
        print(f"GPU {i} 名称: {gpu_name}")

    # 获取当前 GPU 的索引
    current_device = torch.cuda.current_device()
    print(f"当前使用的 GPU 索引: {current_device}")
    
    # 获取当前 GPU 的名称
    current_gpu_name = torch.cuda.get_device_name(current_device)
    print(f"当前 GPU 名称: {current_gpu_name}")
else:
    print("没有可用的 GPU。")

运行结果示例和截图

如果你的系统上有可用的 GPU,运行上述代码后,你将看到类似以下的输出:

py 复制代码
CUDA 可用: True
GPU 数量: 2
GPU 0 名称: NVIDIA GeForce GTX 1080 Ti
GPU 1 名称: NVIDIA GeForce GTX 1070
当前使用的 GPU 索引: 0
当前 GPU 名称: NVIDIA GeForce GTX 1080 Ti
如果没有可用的 GPU,输出将显示:

CUDA 可用: False
没有可用的 GPU。
这样,你就可以轻松获取到 GPU 的信息了!
相关推荐
ahead~3 分钟前
【大模型入门】访问GPT_API实战案例
人工智能·python·gpt·大语言模型llm
喜欢吃豆3 分钟前
深入企业内部的MCP知识(三):FastMCP工具转换(Tool Transformation)全解析:从适配到增强的工具进化指南
java·前端·人工智能·大模型·github·mcp
pany10 分钟前
写代码的节奏,正在被 AI 改写
前端·人工智能·aigc
我爱一条柴ya35 分钟前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
万米商云39 分钟前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
新加坡内哥谈技术42 分钟前
Google AI 刚刚开源 MCP 数据库工具箱,让 AI 代理安全高效地查询数据库
人工智能
慕婉030744 分钟前
深度学习概述
人工智能·深度学习
大模型真好玩1 小时前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
19891 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
6confim1 小时前
AI原生软件工程师
人工智能·ai编程·cursor