spark:数据的关联与合并、缓存和checkpoint

文章目录

  • [1. 数据的关联与合并](#1. 数据的关联与合并)
    • [1.1 join关联](#1.1 join关联)
      • [1.1.1 内关联](#1.1.1 内关联)
      • [1.1.2 左关联](#1.1.2 左关联)
      • [1.1.3 右关联](#1.1.3 右关联)
    • [1.2 Union合并](#1.2 Union合并)
  • [2. 缓存和checkpoint](#2. 缓存和checkpoint)

1. 数据的关联与合并

1.1 join关联

students表数据:

1.1.1 内关联

内关联只返回两个 DataFrame 中在连接键上匹配的行。

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')

#join 关联
df_join = df1.join(df2,'id') #默认时内关联
df_join.show()

运行结果:

1.1.2 左关联

左关联以左 DataFrame 为基础,返回左 DataFrame 的所有行以及在右 DataFrame 中与左 DataFrame 连接键匹配的行。如果右 DataFrame 中没有匹配的行,则相应的列将填充为 null

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')
#左关联
df_left_join = df1.join(df2,'id','left')
df_left_join.show()

运行结果:

1.1.3 右关联

右关联以右 DataFrame 为基础,返回右 DataFrame 的所有行以及在左 DataFrame 中与右 DataFrame 连接键匹配的行。如果左 DataFrame 中没有匹配的行,则相应的列将填充为 null

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')

#右关联
df_right_join = df1.join(df2,'id','right')
df_right_join.show()

运行结果

1.2 Union合并

在 Spark 中,union用于合并两个或多个相同数据结构的数据集(DataFrame 或 Dataset)。

python 复制代码
# union合并  上下行合并要保证字段数量和类型一致
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

# 读取文件数据转为df
df1 = ss.read.csv('hdfs://node1:8020/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1:8020/data/students2.csv',header=True,sep=',')

# 合并
df_union = df1.union(df2)
df_union.show(100)

df_unionAll = df1.unionAll(df2)  # 和union效果一样
df_unionAll.show(100)

# 合并后去重
df_distinct =  df_union.distinct()
df_distinct.show(100)

注意:union合并时,上下行合并要保证字段数量和类型一致。

2. 缓存和checkpoint

python 复制代码
# 缓存和checkpoint
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

# 指定checkpoint位置
sc = ss.sparkContext
sc.setCheckpointDir('hdfs://node1:8020/df_checpoint')

# 读取文件数据转为df
df1 = ss.read.csv('hdfs://node1:8020/data/students.csv',header=True,sep=',')

# df1数据缓存
df1.persist()

# df1数据checkpoint
df1.checkpoint()

# df中的缓存和checkpoint不需要触发执行,内部会自动触发
相关推荐
ayingmeizi16327 分钟前
智慧养老的数字化转型:AI CRM如何重构全链路增长
大数据·人工智能·重构
老马聊技术1 小时前
HBase单节点环境搭建详细教程
大数据·数据库·hbase
xerthwis1 小时前
Flink:从“微批”到“真流”,数据处理的哲学转向与时代抉择
大数据·flink
猫豆~2 小时前
Ansible自动运维——6day
linux·数据库·sql·缓存·云计算
Wang's Blog2 小时前
Kafka: 消费者高级实践之分区控制、多线程处理与 Offset 管理
分布式·kafka
jqpwxt2 小时前
启点创新智慧景区服务平台,智慧景区数字驾驶舱建设
大数据·人工智能
阿里云大数据AI技术2 小时前
Hologres Dynamic Table:高效增量刷新,构建实时统一数仓的核心利器
大数据·人工智能·阿里云·实时数仓·hologres
Familyism2 小时前
ES基础入门
大数据·elasticsearch·搜索引擎
跨境卫士情报站2 小时前
摆脱砍单魔咒!Temu 自养号系统化采购,低成本高安全
大数据·人工智能·安全·跨境电商·亚马逊·防关联
老鱼说AI2 小时前
经典论文精读第一期:DeepSeek-R1-Zero ——RL奇迹
人工智能·分布式·深度学习·神经网络·自然语言处理·nlp·transformer