spark:数据的关联与合并、缓存和checkpoint

文章目录

  • [1. 数据的关联与合并](#1. 数据的关联与合并)
    • [1.1 join关联](#1.1 join关联)
      • [1.1.1 内关联](#1.1.1 内关联)
      • [1.1.2 左关联](#1.1.2 左关联)
      • [1.1.3 右关联](#1.1.3 右关联)
    • [1.2 Union合并](#1.2 Union合并)
  • [2. 缓存和checkpoint](#2. 缓存和checkpoint)

1. 数据的关联与合并

1.1 join关联

students表数据:

1.1.1 内关联

内关联只返回两个 DataFrame 中在连接键上匹配的行。

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')

#join 关联
df_join = df1.join(df2,'id') #默认时内关联
df_join.show()

运行结果:

1.1.2 左关联

左关联以左 DataFrame 为基础,返回左 DataFrame 的所有行以及在右 DataFrame 中与左 DataFrame 连接键匹配的行。如果右 DataFrame 中没有匹配的行,则相应的列将填充为 null

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')
#左关联
df_left_join = df1.join(df2,'id','left')
df_left_join.show()

运行结果:

1.1.3 右关联

右关联以右 DataFrame 为基础,返回右 DataFrame 的所有行以及在左 DataFrame 中与右 DataFrame 连接键匹配的行。如果左 DataFrame 中没有匹配的行,则相应的列将填充为 null

python 复制代码
# join 关联
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

#读取文件数据转为df
df1 = ss.read.csv('hdfs://node1/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1/data/students2.csv',header=True,sep=',')

#右关联
df_right_join = df1.join(df2,'id','right')
df_right_join.show()

运行结果

1.2 Union合并

在 Spark 中,union用于合并两个或多个相同数据结构的数据集(DataFrame 或 Dataset)。

python 复制代码
# union合并  上下行合并要保证字段数量和类型一致
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

# 读取文件数据转为df
df1 = ss.read.csv('hdfs://node1:8020/data/students.csv',header=True,sep=',')
df2 = ss.read.csv('hdfs://node1:8020/data/students2.csv',header=True,sep=',')

# 合并
df_union = df1.union(df2)
df_union.show(100)

df_unionAll = df1.unionAll(df2)  # 和union效果一样
df_unionAll.show(100)

# 合并后去重
df_distinct =  df_union.distinct()
df_distinct.show(100)

注意:union合并时,上下行合并要保证字段数量和类型一致。

2. 缓存和checkpoint

python 复制代码
# 缓存和checkpoint
from pyspark.sql import SparkSession

ss = SparkSession.builder.getOrCreate()

# 指定checkpoint位置
sc = ss.sparkContext
sc.setCheckpointDir('hdfs://node1:8020/df_checpoint')

# 读取文件数据转为df
df1 = ss.read.csv('hdfs://node1:8020/data/students.csv',header=True,sep=',')

# df1数据缓存
df1.persist()

# df1数据checkpoint
df1.checkpoint()

# df中的缓存和checkpoint不需要触发执行,内部会自动触发
相关推荐
北i19 分钟前
ZooKeeper 一致性模型解析:线性一致性与顺序一致性的平衡
分布式·zookeeper·云原生
IT技术小密圈33 分钟前
图解分布式锁: 5分钟搞懂分布式锁
分布式·后端·面试
bing_1581 小时前
kafka 生产者是如何发送消息的?
分布式·kafka
IT毕设梦工厂2 小时前
大数据毕业设计选题推荐-基于大数据的1688商品类目关系分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·毕业设计·源码·数据可视化·bigdata·选题推荐
君不见,青丝成雪2 小时前
Hadoop技术栈(四)HIVE常用函数汇总
大数据·数据库·数据仓库·hive·sql
万邦科技Lafite3 小时前
利用淘宝开放API接口监控商品状态,掌握第一信息
大数据·python·电商开放平台·开放api接口·淘宝开放平台
更深兼春远8 小时前
flink+clinkhouse安装部署
大数据·clickhouse·flink
Monly218 小时前
RabbitMQ:数据隔离
分布式·rabbitmq
专注API从业者11 小时前
Python + 淘宝 API 开发:自动化采集商品数据的完整流程
大数据·运维·前端·数据挖掘·自动化
萧鼎12 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python