基于模型的强化学习方法4大类灌水范式

我们都知道基于模型的强化学习,就是从数据中学一个环境模型。

举个例子,我们要控制一个马达,输入就是电流,输出就是转速。无模型强化学习就是随机采样,然后从数据中直接学习输入到输出的影射,研究重心在如何高效学习。

基于模型的强化学习,希望从输入输出中学习一个马达的状态转移模型,然后智能体和这个模型交互。这里面有什么问题呢?

问题就在于,这个模型一定会有误差。即使用数据去学习一个二次函数,也会有误差。如上图所示。

四大类灌水范式

上面这张图,一张图代表一类灌水范式。

  1. 第一类:用类似机器学习里面集成学习的方法,去减小这个model-bias;
  2. 第二类:用元学习的方法,期望策略能搞处理不同情况的model-bias;
  3. 第三类:希望model-bias对策略的影响要对齐;
  4. 第四类:这一类和前三类比是比较新的思路:model-bias和最终性能没有直接联系,搞定model-bias并不一定能够带来性能提升,搞定policy搞定一切。这个方向还有待大灌水。

原文:Understanding world models through multi-step pruning policy via reinforcement learning

链接:https://www.sciencedirect.com/science/article/abs/pii/S0020025524012751

PDF链接:https://github.com/tinyzqh/MSPP/blob/master/Understanding world models through multi-step pruning policy via reinforcement learning.pdf

相关推荐
火山引擎开发者社区9 分钟前
DeepSeek-V3.2正式登陆火山方舟
大数据·人工智能
RPA 机器人就找八爪鱼13 分钟前
RPA 赋能银行数字化转型:四大核心应用场景深度解析
数据库·人工智能·rpa
newsxun14 分钟前
行风伟业集团举办私董鉴藏会,聚焦当代艺术价值与前瞻收藏
人工智能
free-elcmacom24 分钟前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
DARLING Zero two♡27 分钟前
浏览器里跑 AI 语音转写?Whisper Web + cpolar让本地服务跑遍全网
前端·人工智能·whisper
袁庭新32 分钟前
2025年11月总结
人工智能·aigc
代码输入中...34 分钟前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
科普瑞传感仪器44 分钟前
告别“盲打磨”:六维力传感器如何通过选型实现真正的机器人恒力控制?
人工智能·科技·ai·机器人·无人机
银空飞羽1 小时前
让Trae SOLO全自主学习开发近期爆出的React RCE漏洞靶场并自主利用验证(CVE-2025-55182)
前端·人工智能·安全
图欧学习资源库1 小时前
人工智能领域、图欧科技、IMYAI智能助手2025年10月更新月报
人工智能·科技