基于模型的强化学习方法4大类灌水范式

我们都知道基于模型的强化学习,就是从数据中学一个环境模型。

举个例子,我们要控制一个马达,输入就是电流,输出就是转速。无模型强化学习就是随机采样,然后从数据中直接学习输入到输出的影射,研究重心在如何高效学习。

基于模型的强化学习,希望从输入输出中学习一个马达的状态转移模型,然后智能体和这个模型交互。这里面有什么问题呢?

问题就在于,这个模型一定会有误差。即使用数据去学习一个二次函数,也会有误差。如上图所示。

四大类灌水范式

上面这张图,一张图代表一类灌水范式。

  1. 第一类:用类似机器学习里面集成学习的方法,去减小这个model-bias;
  2. 第二类:用元学习的方法,期望策略能搞处理不同情况的model-bias;
  3. 第三类:希望model-bias对策略的影响要对齐;
  4. 第四类:这一类和前三类比是比较新的思路:model-bias和最终性能没有直接联系,搞定model-bias并不一定能够带来性能提升,搞定policy搞定一切。这个方向还有待大灌水。

原文:Understanding world models through multi-step pruning policy via reinforcement learning

链接:https://www.sciencedirect.com/science/article/abs/pii/S0020025524012751

PDF链接:https://github.com/tinyzqh/MSPP/blob/master/Understanding world models through multi-step pruning policy via reinforcement learning.pdf

相关推荐
Clarence Liu2 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型2 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室2 小时前
AI4Science开源汇总
人工智能
CeshirenTester2 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis2 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs2 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷2 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极2 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发
冰西瓜6003 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
模型时代3 小时前
Claude AI 发现 500 个高危软件漏洞
人工智能