基于模型的强化学习方法4大类灌水范式

我们都知道基于模型的强化学习,就是从数据中学一个环境模型。

举个例子,我们要控制一个马达,输入就是电流,输出就是转速。无模型强化学习就是随机采样,然后从数据中直接学习输入到输出的影射,研究重心在如何高效学习。

基于模型的强化学习,希望从输入输出中学习一个马达的状态转移模型,然后智能体和这个模型交互。这里面有什么问题呢?

问题就在于,这个模型一定会有误差。即使用数据去学习一个二次函数,也会有误差。如上图所示。

四大类灌水范式

上面这张图,一张图代表一类灌水范式。

  1. 第一类:用类似机器学习里面集成学习的方法,去减小这个model-bias;
  2. 第二类:用元学习的方法,期望策略能搞处理不同情况的model-bias;
  3. 第三类:希望model-bias对策略的影响要对齐;
  4. 第四类:这一类和前三类比是比较新的思路:model-bias和最终性能没有直接联系,搞定model-bias并不一定能够带来性能提升,搞定policy搞定一切。这个方向还有待大灌水。

原文:Understanding world models through multi-step pruning policy via reinforcement learning

链接:https://www.sciencedirect.com/science/article/abs/pii/S0020025524012751

PDF链接:https://github.com/tinyzqh/MSPP/blob/master/Understanding world models through multi-step pruning policy via reinforcement learning.pdf

相关推荐
TDengine (老段)25 分钟前
TDengine C/C++ 连接器进阶指南
大数据·c语言·c++·人工智能·物联网·时序数据库·tdengine
lixzest29 分钟前
PyTorch与Transformer的关系
人工智能·pytorch·transformer
檐下翻书1731 小时前
产品开发跨职能流程图在线生成工具
大数据·人工智能·架构·流程图·论文笔记
杜子不疼.1 小时前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
腾视科技2 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新3 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light608 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升8 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide8 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农8 小时前
码农的妇产科实习记录
android·java·人工智能