基于模型的强化学习方法4大类灌水范式

我们都知道基于模型的强化学习,就是从数据中学一个环境模型。

举个例子,我们要控制一个马达,输入就是电流,输出就是转速。无模型强化学习就是随机采样,然后从数据中直接学习输入到输出的影射,研究重心在如何高效学习。

基于模型的强化学习,希望从输入输出中学习一个马达的状态转移模型,然后智能体和这个模型交互。这里面有什么问题呢?

问题就在于,这个模型一定会有误差。即使用数据去学习一个二次函数,也会有误差。如上图所示。

四大类灌水范式

上面这张图,一张图代表一类灌水范式。

  1. 第一类:用类似机器学习里面集成学习的方法,去减小这个model-bias;
  2. 第二类:用元学习的方法,期望策略能搞处理不同情况的model-bias;
  3. 第三类:希望model-bias对策略的影响要对齐;
  4. 第四类:这一类和前三类比是比较新的思路:model-bias和最终性能没有直接联系,搞定model-bias并不一定能够带来性能提升,搞定policy搞定一切。这个方向还有待大灌水。

原文:Understanding world models through multi-step pruning policy via reinforcement learning

链接:https://www.sciencedirect.com/science/article/abs/pii/S0020025524012751

PDF链接:https://github.com/tinyzqh/MSPP/blob/master/Understanding world models through multi-step pruning policy via reinforcement learning.pdf

相关推荐
胡耀超2 分钟前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
jndingxin10 分钟前
OpenCV CUDA 模块中用于在 GPU 上计算两个数组对应元素差值的绝对值函数absdiff(
人工智能·opencv·计算机视觉
jerry60910 分钟前
LLM笔记(五)概率论
人工智能·笔记·学习·概率论
硅谷秋水11 分钟前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人
Tiny番茄40 分钟前
Multimodal models —— CLIP,LLava,QWen
人工智能
Wnq100721 小时前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
无心水2 小时前
【程序员AI入门:模型】19.开源模型工程化全攻略:从选型部署到高效集成,LangChain与One-API双剑合璧
人工智能·langchain·开源·ai入门·程序员ai开发入门·程序员的 ai 开发第一课·程序员ai入门
有梦想的攻城狮2 小时前
大语言模型与多模态模型比较
人工智能·语言模型·自然语言处理·llm·大语言模型
九章云极AladdinEdu3 小时前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex3 小时前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉