OpenAI多智能体框架Swarm实测—基于Qwen开源模型

1、基础配置

底层模型:Qwen开源模型

swarm:0.1.0

2、agent设置

python 复制代码
agent_a = Agent(name="Agent A", instructions="你是Agent A,是一个有用的助手", functions=[transfer_to_agent_b], model=model_name,
                tool_choice='auto')
agent_b = Agent(name="Agent B", instructions="你是Agent B,仅仅使用繁体字说话", functions=[transfer_to_agent_a],model=model_name, tool_choice='auto')

agent之间的跳转函数

python 复制代码
def transfer_to_agent_b():
    return agent_b
def transfer_to_agent_a():
    return agent_a

3、单智能体示例

输入示例:

python 复制代码
msg = [{"role": "user", "content": "你好,小明的年龄是12岁。"},
       {"role": "user", "content": "我的年龄是小明的2倍"},
       {"role": "user", "content": "请问我的年龄是多少"}]

4、多智能体示例

输入示例

python 复制代码
msg = [{"role": "user", "content": "你好,你是谁?"},
       {"role": "user", "content": "我想和Agent B说话"},
       {"role": "user", "content": "你好,你是谁?由哪家公司训练出来的?"},
       {"role": "user", "content": "写一副春节对联"},
       {"role": "user", "content": "帮我转到agent a"},
       {"role": "user", "content": "你好,你是哪家公司训练出来的?"},
       {"role": "user", "content": "写一首七言绝句,有关爱情的。"}]

初始的agent设置为Agent A,上面问答的基本流程是: Agent A >>>Agent B >>>Agent A,具体输出如下

可以看到,开源模型+Swarm框架,可以完成Agent之间的跳转,回复效果还不错。

5、测试脚本

python 复制代码
agent = agent_a
history = []
history_dict = {'history_agent_a':[], 'history_agent_b':[]}
for m in msg:
    print('{}: {}'.format(m['role'], m['content']))
    history = history + [m]
    str_name_forward = agent.name.lower().replace(' ','_')
    history_dict['history_{}'.format(str_name_forward)] += [m]

    response = client.run(agent=agent, messages=history_dict['history_{}'.format(str_name_forward)], history_messages=history_dict)

    agent = response.agent
    res = response.messages
    str_name_backward = agent.name.lower().replace(' ', '_')
    history_dict['history_{}'.format(str_name_backward)] += res
    history = history + res

    print("{}:{}".format(response.agent.name, response.messages[-1]["content"]))

history保存全部会话记录,history_agent_a和history_agent_b分别保存子Agent的会话记录

swarm git链接:swarm

相关推荐
吴法刚几秒前
Gemini cli 源码分析之-Agent分析-Agent架构系统分析
架构·agent·ai编程·gemini
AI-智能12 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
大模型教程14 小时前
AI基础入门(应用开发篇)——LangChain:核心抽象
langchain·llm·agent
大模型教程14 小时前
LangChain 入门①:什么是 LangChain?LLM 应用开发的 “好帮手”
langchain·llm·agent
AI大模型14 小时前
当大模型遇上垂直领域:微调如何让 AI 从 “什么都会” 到 “样样精通”?
程序员·llm·agent
AI大模型14 小时前
被 LangChain 全家桶搞晕了?LangGraph、LangSmith、LangFlow 一文读懂
langchain·llm·agent
KG_LLM图谱增强大模型18 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
AI-智能2 天前
RAG 系统架构设计模式介绍
人工智能·langchain·llm·agent·知识库·rag·大模型应用
deephub2 天前
从零开始:用Python和Gemini 3四步搭建你自己的AI Agent
人工智能·python·大语言模型·agent
大模型教程2 天前
一文搞懂 LLM 的 Transformer!看完能和别人吹一年
程序员·llm·agent