讲解机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是一种经典的无监督学习算法,被广泛应用于数据挖掘和模式识别领域。该算法的目标是将数据集中的样本划分成 K 个互不重叠的簇,使得每个样本与其所属簇的质心(即簇的中心点)之间的距离最小化。

K-均值聚类算法的步骤如下:

  1. 随机选择 K 个样本作为初始的质心。
  2. 将每个样本分配到与其最近的质心所属的簇。
  3. 重新计算每个簇的质心。
  4. 重复步骤2和3,直到簇的分配不再变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:K-均值聚类算法的思想简单,易于理解和实现。
  2. 可扩展性:算法对于大规模数据集的处理效果比较好,尤其是当数据集的维度较低时。
  3. 可解释性:聚类结果直观,易于理解和解释。

K-均值聚类算法的缺点包括:

  1. 对初始质心敏感:初始质心的选择对算法的结果有较大影响,不同的初始质心可能会导致不同的聚类结果。
  2. 对离群点敏感:离群点的存在会影响质心的计算,从而影响簇的分配。
  3. 需要预先确定聚类个数 K:聚类个数的选择往往是主观的,不同的 K 可能会得到不同的聚类结果。

为了克服 K-均值聚类算法的缺点,有一些改进的方法被提出,如谱聚类、层次聚类等。这些改进的算法通常能够处理更复杂的数据结构和聚类问题。

相关推荐
敏叔V5874 小时前
AI智能体仿真环境:虚拟世界中的复杂任务训练与评估
人工智能
mmWave&THz4 小时前
柔性PZT压电薄膜在空间大型柔性反射面精准调控中的技术突破与应用
网络·人工智能·系统架构·信息与通信·智能硬件
一招定胜负4 小时前
矿物分类系统设计
人工智能·分类·数据挖掘
大模型最新论文速读4 小时前
「图文讲解」Profit:用概率挑选重要 token 解决 SFT 过拟合问题
论文阅读·人工智能·深度学习·机器学习·自然语言处理
亿丢丢4 小时前
DeepSeek本地部署:Ollama+Open WebUI
人工智能·windows·deepseek
Sagittarius_A*4 小时前
单 / 多目标模板匹配:相似度度量与阈值优化【计算机视觉】
人工智能·计算机视觉
Coder_Boy_4 小时前
基于SpringAI的在线考试系统-核心模块的数据模型交互关系
java·数据库·人工智能·spring boot·交互
CCC:CarCrazeCurator4 小时前
汽车UDS诊断深度剖析:定义、原理、应用与未来趋势
人工智能·汽车
FL16238631294 小时前
C# winform部署yolo26-seg实例分割的onnx模型演示源码+模型+说明
人工智能·深度学习
沛沛老爹4 小时前
从Web到AI:Agent Skills CI/CD流水线集成实战指南
java·前端·人工智能·ci/cd·架构·llama·rag