【代码模板】Pytorch AMP 混合精度训练

背景

当使用AMP混合精度训练时,可以提升训练速度,并降低对显存的占用。下面提供一个使用AMP训练的代码demo。

Demo

python 复制代码
use_amp = True

net = make_model(in_size, out_size, num_layers)
opt = torch.optim.SGD(net.parameters(), lr=0.001)
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)

start_timer()
for epoch in range(epochs):
    for input, target in zip(data, targets):
        with torch.autocast(device_type=device, dtype=torch.float16, enabled=use_amp):
            output = net(input)
            loss = loss_fn(output, target)
        scaler.scale(loss).backward()
        scaler.step(opt)
        scaler.update()
        opt.zero_grad() # set_to_none=True here can modestly improve performance
end_timer_and_print("Mixed precision:")

参考

Automatic Mixed Precision

相关推荐
希艾席帝恩20 分钟前
智慧城市建设中,数字孪生的价值在哪里?
人工智能·低代码·私有化部署·数字孪生·数字化转型
我的offer在哪里26 分钟前
开源 AI 生成游戏平台:原理、开源项目与落地实战指南
人工智能·游戏·开源
FansyMeng32 分钟前
VSCode配置anaconda
vscode·python
qidun21039 分钟前
埃夫特机器人防护服使用范围详解-避免十大应用误区
网络·人工智能
电饭叔41 分钟前
Tkinter Button 括号内的核心参数详解
python·学习
Σίσυφος190041 分钟前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手1 小时前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking1 小时前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy7152292581631 小时前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学1 小时前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具