【机器学习】联邦学习 Federated Learning

有很多用户安装了Google的app,比如搜索引擎等。这些移动端的app都会搜集数据,产生数据。有些数据对于Google来说是有用的,所以Google想要建立一个机器学习模型,然后使用移动端的数据来训练机器学习模型。app把这些数据收集起来,发送到Google云端,然后Google在自己的集群上来训练模型,Google有足够的计算资源,这样不就解决了吗?但是事情不是这么简单的。假如有一个这样的限制,照片是隐私不想让Google传到云端上,那么如何训练机器学习模型呢?

每家医院都有自己的数据,可以用来训练自己的模型将实现预测等,但是每家的数据都不多,训练的效果也不好。最简单的方法就是将数据整合起来,在服务器上将模型进行训练。但是,用户数据不能轻易交给别人。

之前的时候学习过并行算法或者是分布式算,其中有一种编程模型,Parameter Server,我们可以用这种模型训练神经网络, 计算几乎都是Worker做的,Server端存储模型参数或者更新模型参数。

每一轮都要重复这样的操作:Worker向Server索要模型参数,然后Worker作本机计算,求出模型梯度。 Worker将计算出的梯度发送给Server,然后Server用梯度更新模型更新参数。

上述过程中,我们可以知道数据没有离开Worker,这样的话减少clock time的同时还保护了用户的隐私。联邦学习是一种分布式学习,联邦学习跟传统的分布式学习有很多不同:

  • 用户对他们的设备和数据有绝对的控制权
  • Worker节点不稳定
  • 通信代价比计算代价要高
  • 存储在Worker节点中的数据并不是独立同分布的(IID)
  • 节点负载不平衡
相关推荐
PaperRed ai写作降重助手6 分钟前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking6 分钟前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy71522925816310 分钟前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学11 分钟前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
卡奥斯开源社区官方16 分钟前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能
小W与影刀RPA19 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
小咖自动剪辑32 分钟前
12306余票监控辅助工具详解:自动查询/多方案预约/到点提交
人工智能
得赢科技36 分钟前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能
victory04311 小时前
Gradio实现中英文切换,不影响页面状态,不得刷新页面情况下
人工智能
微光闪现1 小时前
践行“科技向善”,微乐播捐赠108,888元助力唇腭裂儿童绽放笑容
人工智能