【机器学习】联邦学习 Federated Learning

有很多用户安装了Google的app,比如搜索引擎等。这些移动端的app都会搜集数据,产生数据。有些数据对于Google来说是有用的,所以Google想要建立一个机器学习模型,然后使用移动端的数据来训练机器学习模型。app把这些数据收集起来,发送到Google云端,然后Google在自己的集群上来训练模型,Google有足够的计算资源,这样不就解决了吗?但是事情不是这么简单的。假如有一个这样的限制,照片是隐私不想让Google传到云端上,那么如何训练机器学习模型呢?

每家医院都有自己的数据,可以用来训练自己的模型将实现预测等,但是每家的数据都不多,训练的效果也不好。最简单的方法就是将数据整合起来,在服务器上将模型进行训练。但是,用户数据不能轻易交给别人。

之前的时候学习过并行算法或者是分布式算,其中有一种编程模型,Parameter Server,我们可以用这种模型训练神经网络, 计算几乎都是Worker做的,Server端存储模型参数或者更新模型参数。

每一轮都要重复这样的操作:Worker向Server索要模型参数,然后Worker作本机计算,求出模型梯度。 Worker将计算出的梯度发送给Server,然后Server用梯度更新模型更新参数。

上述过程中,我们可以知道数据没有离开Worker,这样的话减少clock time的同时还保护了用户的隐私。联邦学习是一种分布式学习,联邦学习跟传统的分布式学习有很多不同:

  • 用户对他们的设备和数据有绝对的控制权
  • Worker节点不稳定
  • 通信代价比计算代价要高
  • 存储在Worker节点中的数据并不是独立同分布的(IID)
  • 节点负载不平衡
相关推荐
Blossom.11821 分钟前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
说私域34 分钟前
O2O电商变现:线上线下相互导流——基于定制开发开源AI智能名片S2B2C商城小程序的研究
人工智能·小程序·开源·零售
xiaohanbao0936 分钟前
day29 python深入探索类装饰器
开发语言·python·学习·机器学习·pandas
白杆杆红伞伞1 小时前
04_决策树
算法·决策树·机器学习
Jamence1 小时前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理
与火星的孩子对话1 小时前
Unity3D开发AI桌面精灵/宠物系列 【六】 人物模型 语音口型同步 LipSync 、梅尔频谱MFCC技术、支持中英文自定义编辑- 基于 C# 语言开发
人工智能·unity·c#·游戏引擎·宠物·lipsync
Data-Miner1 小时前
35页AI应用PPT《DeepSeek如何赋能职场应用》DeepSeek本地化部署与应用案例合集
人工智能
KangkangLoveNLP1 小时前
Llama:开源的急先锋
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理·llama
白熊1882 小时前
【通用智能体】Serper API 详解:搜索引擎数据获取的核心工具
人工智能·搜索引擎·大模型
云卓SKYDROID2 小时前
无人机屏蔽与滤波技术模块运行方式概述!
人工智能·无人机·航电系统·科普·云卓科技