文章目录
一、平面图形的面积
1.直角坐标情形
我们已经知道,由曲线 y = f ( x ) ( f ( x ) ⩾ 0 ) y = f(x) (f(x) \geqslant 0) y=f(x)(f(x)⩾0) 及直线 x = a , x = b ( a < b ) x = a, x = b (a < b) x=a,x=b(a<b) 与 x x x 轴所围成的曲边梯形的面积 A A A 是定积分
A = ∫ a b f ( x ) d x A = \int_a^b f(x) \mathrm{d}x A=∫abf(x)dx
其中被积表达式 f ( x ) d x f(x) \mathrm{d}x f(x)dx 就是直角坐标下的面积元素 ,它表示高为 f ( x ) f(x) f(x) 、底为 d x \mathrm{d}x dx 的一个矩形面积。
应用定积分,不但可以计算曲边梯形的面积,还可以计算一些比较复杂的平面图形的面积。
2.极坐标情形
某些平面图形,用极坐标来计算它们的面积比较方便。
设由曲线 ρ = ρ ( θ ) \rho = \rho(\theta) ρ=ρ(θ) 及射线 θ = α , θ = β \theta = \alpha, \theta = \beta θ=α,θ=β 围成一图形(简称为曲边扇形),现在要计算它的面积(如图)。这里, ρ ( θ ) \rho(\theta) ρ(θ) 在 [ α , β ] [\alpha, \beta] [α,β] 上连续,且 ρ ( θ ) ⩾ 0 , 0 < β − α ⩽ 2 π \rho(\theta) \geqslant 0, 0 < \beta - \alpha \leqslant 2\pi ρ(θ)⩾0,0<β−α⩽2π。
由于当 θ \theta θ 在 [ α , β ] [\alpha, \beta] [α,β] 上变动时,极径 ρ = ρ ( θ ) \rho = \rho(\theta) ρ=ρ(θ) 也随之变动,因此所求图形面积不能直接利用扇形面积公式 A = 1 2 R 2 θ A = \cfrac{1}{2} R^2 \theta A=21R2θ 来计算。
取极角 θ \theta θ 为积分变量,它的变化区间为 [ α , β ] [\alpha, \beta] [α,β] 。相应于任一小区间 [ θ , θ + d θ ] [\theta, \theta + \mathrm{d}\theta] [θ,θ+dθ] 的窄曲边扇形的面积可以用半径为 ρ = ρ ( θ ) \rho = \rho(\theta) ρ=ρ(θ) 、中心角为 d θ \mathrm{d}\theta dθ 的扇形的面积来近似代替,从而得到这窄曲边扇形面积的近似值,即曲边扇形的面积元素
d A = 1 2 [ ρ ( θ ) ] 2 d θ \mathrm{d}A = \cfrac{1}{2} [\rho(\theta)]^2 \mathrm{d}\theta dA=21[ρ(θ)]2dθ
以 1 2 [ ρ ( θ ) ] 2 d θ \cfrac{1}{2} [\rho(\theta)]^2 \mathrm{d}\theta 21[ρ(θ)]2dθ 为被积表达式,在闭区间 [ α , β ] [\alpha, \beta] [α,β] 上作定积分,便得所求曲边扇形的面积为
A = ∫ α β 1 2 [ ρ ( θ ) ] 2 d θ . A = \int_{\alpha}^{\beta} \cfrac{1}{2} [\rho(\theta)]^2 \mathrm{d}\theta . A=∫αβ21[ρ(θ)]2dθ.
二、体积
1.旋转体体积
旋转体 就是由一个平面图形绕这平面内一条直线旋转一周而成的立体。这直线叫做旋转轴。圆柱、圆锥、圆台、球可以分别看成是由矩形绕它的一条边、直角三角形绕它的直角边、直角梯形绕它的直角腰、半圆绕它的直径旋转一周而成的立体,所以它们都是旋转体。
上述旋转体都可以看作是由连续曲线 y = f ( x ) y = f(x) y=f(x) ,直线 x = a , x = b x = a, x = b x=a,x=b 及 x x x 轴所围成的曲边梯形绕 x x x 轴旋转一周而成的立体。
取横坐标 x x x 为积分变量,它的变化区间为 [ a , b ] [a, b] [a,b]。相应于 [ a , b ] [a, b] [a,b] 上的任一小区间 [ x , x + d x ] [x, x + \mathrm{d}x] [x,x+dx] 的窄曲边梯形绕 x x x 轴旋转而成的薄片的体积近似于以 f ( x ) f(x) f(x) 为底半径、 d x \mathrm{d}x dx 为高的扁圆柱体的体积(如图),即体积元素
d V = π [ f ( x ) ] 2 d x \mathrm{d}V = \pi [f(x)]^2 \mathrm{d}x dV=π[f(x)]2dx
以 π [ f ( x ) ] 2 d x \pi [f(x)]^2 \mathrm{d}x π[f(x)]2dx 为被积表达式,在闭区间 [ a , b ] [a, b] [a,b] 上作定积分,便得所求旋转体体积为
V = ∫ a b π [ f ( x ) ] 2 d x V = \int_a^b \pi [f(x)]^2 \mathrm{d}x V=∫abπ[f(x)]2dx
用类似方法可以推出:由曲线 x = φ ( y ) x = \varphi(y) x=φ(y),直线 y = c , y = d ( c < d ) y = c, y = d (c < d) y=c,y=d(c<d) 与 y y y 轴所围成的曲边梯形,绕 y y y 轴旋转一周而成的旋转体(如图6-11)的体积为
V = π ∫ c d [ φ ( y ) ] 2 d y . V = \pi \int_c^d [\varphi(y)]^2 \mathrm{d}y . V=π∫cd[φ(y)]2dy.
2.平行截面面积为已知的立体的体积
从计算旋转体体积的过程中可以看出:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面的面积,那么这个立体的体积也可以用定积分来计算。
如图6-13所示,取上述定轴为 x x x 轴,并设该立体在过点 x = a , x = b x = a, x = b x=a,x=b 且垂直于 x x x 轴的两个平面之间。以 A ( x ) A(x) A(x) 表示过点 x x x 且垂直于 x x x 轴的截面面积。假定 A ( x ) A(x) A(x) 为已知的 x x x 的连续函数。这时,取 x x x 为积分变量,它的变化区间为 [ a , b ] [a, b] [a,b] ;立体中相应于 [ a , b ] [a, b] [a,b] 上任一小区间 [ x , x + d x ] [x, x + \mathrm{d}x] [x,x+dx] 的一薄片的体积,近似于底面积为 A ( x ) A(x) A(x) 、高为 d x \mathrm{d}x dx 的扁柱体的体积,即体积元素
d V = A ( x ) d x \mathrm{d}V = A(x) \mathrm{d}x dV=A(x)dx
以 A ( x ) d x A(x) \mathrm{d}x A(x)dx 为被积表达式,在闭区间 [ a , b ] [a, b] [a,b] 上作定积分,便得所求立体的体积
V = ∫ a b A ( x ) d x . V = \int_a^b A(x) \mathrm{d}x . V=∫abA(x)dx.
三、平面曲线的弧长
设 A , B A, B A,B 是曲线弧的两个端点。在弧AB上依次取分点 A = M 0 , M 1 , M 2 , ⋯ , M i − 1 , M i , ⋯ , M n − 1 , M n = B A = M_0, M_1, M_2, \cdots, M_{i - 1}, M_i, \cdots, M_{n - 1}, M_n = B A=M0,M1,M2,⋯,Mi−1,Mi,⋯,Mn−1,Mn=B ,并依次连接相邻的分点得一折线(图6-16)。当分点的数目无限增加且每个小段弧 M i − 1 M i M_{i - 1} M_i Mi−1Mi 都缩向一点时,如果此时折线的长 ∑ i = 1 n ∣ M i − 1 M i ∣ \displaystyle \sum_{i = 1}^n |M_{i - 1} M_i| i=1∑n∣Mi−1Mi∣ 的极限存在,那么称此极限为曲线弧AB的弧长,并称此曲线弧AB是可求长的。
对光滑曲线弧有如下结论:
定理 光滑曲线弧是可求长的.
由于光滑曲线弧是可求长的,所以可以用定积分来计算弧长。
设曲线弧由参数方程
{ x = φ ( t ) , y = ψ ( t ) ( α ⩽ t ⩽ β ) \begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases} (\alpha \leqslant t \leqslant \beta) {x=φ(t),y=ψ(t)(α⩽t⩽β)
给出,其中 φ ( t ) , ψ ( t ) \varphi(t), \psi(t) φ(t),ψ(t) 在 [ α , β ] [\alpha, \beta] [α,β] 上具有连续导数,且 φ ′ ( t ) , ψ ′ ( t ) \varphi'(t), \psi'(t) φ′(t),ψ′(t) 不同时为零。现在来计算这曲线弧段的长度。
取参数 t t t 为积分变量,它的变化区间为 [ α , β ] [\alpha, \beta] [α,β] 。相应于 [ α , β ] [\alpha, \beta] [α,β] 上任一小区间 [ t , t + d t ] [t, t + \mathrm{d}t] [t,t+dt] 的小弧段的长度 Δ s \Delta s Δs 近似等于对应的弦的长度 ( Δ x ) 2 + ( Δ y ) 2 \sqrt{(\Delta x)^2 + (\Delta y)^2} (Δx)2+(Δy)2 ,因为
Δ x = φ ( t + d t ) − φ ( t ) ≈ d x = φ ′ ( t ) d t , Δ y = ψ ( t + d t ) − ψ ( t ) ≈ d y = ψ ′ ( t ) d t , \Delta x = \varphi(t + \mathrm{d}t) - \varphi(t) \approx \mathrm{d}x = \varphi'(t) \mathrm{d}t, \\ \Delta y = \psi(t + \mathrm{d}t) - \psi(t) \approx \mathrm{d}y = \psi'(t) \mathrm{d}t , Δx=φ(t+dt)−φ(t)≈dx=φ′(t)dt,Δy=ψ(t+dt)−ψ(t)≈dy=ψ′(t)dt,
所以 Δ s \Delta s Δs 的近似值(弧微分)即弧长元素为
d s = ( d x ) 2 + ( d y ) 2 = φ ′ 2 ( t ) ( d t ) 2 + ψ ′ 2 ( t ) ( d t ) 2 = φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t \mathrm{d}s = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2} = \sqrt{\varphi'^2(t)(\mathrm{d}t)^2 + \psi'^2(t)(\mathrm{d}t)^2} = \sqrt{\varphi'^2(t) + \psi'^2(t)} \mathrm{d}t ds=(dx)2+(dy)2 =φ′2(t)(dt)2+ψ′2(t)(dt)2 =φ′2(t)+ψ′2(t) dt
于是所求弧长为
s = ∫ α β φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . s = \int_{\alpha}^{\beta} \sqrt{\varphi'^2(t) + \psi'^2(t)} \mathrm{d}t . s=∫αβφ′2(t)+ψ′2(t) dt.
当曲线弧有直角坐标 方程
y = f ( x ) ( a ⩽ x ⩽ b ) y = f(x) \quad (a \leqslant x \leqslant b) y=f(x)(a⩽x⩽b)
给出,其中 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上具有一阶连续导数,这时曲线弧有参数方程
{ x = x , y = f ( x ) ( a ⩽ x ⩽ b ) \begin{cases} x = x, \\ y = f(x) \end{cases} (a \leqslant x \leqslant b) {x=x,y=f(x)(a⩽x⩽b)
从而所求弧长为
s = ∫ a b 1 + y ′ 2 d x s = \int_a^b \sqrt{1 + y'^2} \mathrm{d}x s=∫ab1+y′2 dx
当曲线弧由极坐标方程
ρ = ρ ( θ ) ( α ⩽ θ ⩽ β ) \rho = \rho(\theta) \quad (\alpha \leqslant \theta \leqslant \beta) ρ=ρ(θ)(α⩽θ⩽β)
给出,其中 ρ ( θ ) \rho(\theta) ρ(θ) 在 [ α , β ] [\alpha, \beta] [α,β] 上具有连续导数,则由直角坐标与极坐标的关系可得
{ x = x ( θ ) = ρ ( θ ) cos θ , y = y ( θ ) = ρ ( θ ) sin θ ( α ⩽ θ ⩽ β ) , \begin{cases} x = x(\theta) = \rho(\theta) \cos \theta, \\ y = y(\theta) = \rho(\theta) \sin \theta \end{cases} (\alpha \leqslant \theta \leqslant \beta) , {x=x(θ)=ρ(θ)cosθ,y=y(θ)=ρ(θ)sinθ(α⩽θ⩽β),
这就是以极角 θ \theta θ 为参数的曲线弧的参数方程。于是,弧长元素为
d s = x ′ 2 ( θ ) + y ′ 2 ( θ ) d θ = ρ 2 ( θ ) + ρ ′ 2 ( θ ) d θ , \mathrm{d}s = \sqrt{x'^2(\theta) + y'^2(\theta)} \mathrm{d} \theta = \sqrt{\rho^2(\theta) + \rho'^2(\theta)} \mathrm{d} \theta , ds=x′2(θ)+y′2(θ) dθ=ρ2(θ)+ρ′2(θ) dθ,
从而所求弧长为
s = ∫ α β ρ 2 ( θ ) + ρ ′ 2 ( θ ) d θ s = \int_{\alpha}^{\beta} \sqrt{\rho^2(\theta) + \rho'^2(\theta)} \mathrm{d} \theta s=∫αβρ2(θ)+ρ′2(θ) dθ
原文链接:高等数学 6.2 定积分在几何学上的应用