神经网络反向传播交叉熵 损失函数对输出层激活值Z2的导数

本文是交叉熵损失函数为代表的两层神经网络的反向传播量化求导计算公式中的一个公式,单独拿出来做一下解释说明。


公式 8-13 是反向传播过程中的一个关键步骤,用于计算损失函数对输出层激活值的导数。这个公式来自于链式法则,结合了交叉熵损失函数和 sigmoid 激活函数的导数。下面我们详细解释公式 8-13 的推导过程。

公式 8-13 的表达式:

∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y

其中:

  • L L L 是损失函数,具体是交叉熵损失函数 L ( y , a 2 ) L(y, a_2) L(y,a2)。
  • z 2 z_2 z2 是输出层神经元的加权输入值(在应用 sigmoid 激活函数之前的值)。
  • a 2 a_2 a2 是输出层神经元的激活值,即应用 sigmoid 函数后的输出。
  • y y y 是真实标签。
  • 公式 8-13 表示的是损失函数 L L L 对输出层加权输入 z 2 z_2 z2 的导数。

推导步骤:

1. 交叉熵损失函数

交叉熵损失函数的表达式为(参考公式 8-11):
L ( y , a 2 ) = − [ y log ⁡ a 2 + ( 1 − y ) log ⁡ ( 1 − a 2 ) ] L(y, a_2) = -[y \log a_2 + (1 - y) \log(1 - a_2)] L(y,a2)=−[yloga2+(1−y)log(1−a2)]

其中:

  • y y y 是真实的标签, a 2 a_2 a2 是模型的输出(经过 sigmoid 激活函数的输出层激活值)。

我们希望通过反向传播来计算损失函数对输出层加权输入 z 2 z_2 z2 的导数。因此,我们需要结合交叉熵损失和 sigmoid 函数进行链式求导。

2. 激活函数(sigmoid)

sigmoid 函数的定义为:
a 2 = σ ( z 2 ) = 1 1 + e − z 2 a_2 = \sigma(z_2) = \frac{1}{1 + e^{-z_2}} a2=σ(z2)=1+e−z21

sigmoid 函数的导数可以通过如下推导得到:
d σ ( z 2 ) d z 2 = σ ( z 2 ) ( 1 − σ ( z 2 ) ) = a 2 ( 1 − a 2 ) \frac{d\sigma(z_2)}{dz_2} = \sigma(z_2) (1 - \sigma(z_2)) = a_2 (1 - a_2) dz2dσ(z2)=σ(z2)(1−σ(z2))=a2(1−a2)

其中,导数 d σ ( z 2 ) d z 2 \frac{d\sigma(z_2)}{dz_2} dz2dσ(z2) 表示激活值 a 2 a_2 a2 对加权输入 z 2 z_2 z2 的变化率。

3. 链式法则的应用

为了计算损失函数对 z 2 z_2 z2 的导数 ∂ L ∂ z 2 \frac{\partial L}{\partial z_2} ∂z2∂L,我们可以利用链式法则。根据链式法则,损失函数对 z 2 z_2 z2 的导数可以表示为:

∂ L ∂ z 2 = ∂ L ∂ a 2 ⋅ ∂ a 2 ∂ z 2 \frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} ∂z2∂L=∂a2∂L⋅∂z2∂a2

即:损失函数对 z 2 z_2 z2 的导数等于损失函数对 a 2 a_2 a2 的导数乘以 a 2 a_2 a2 对 z 2 z_2 z2 的导数。

4. 计算损失函数对 a 2 a_2 a2 的导数

根据交叉熵损失函数的公式,我们可以直接求出损失函数对 a 2 a_2 a2 的导数:
∂ L ∂ a 2 = ∂ ∂ a 2 [ − y log ⁡ a 2 − ( 1 − y ) log ⁡ ( 1 − a 2 ) ] \frac{\partial L}{\partial a_2} = \frac{\partial}{\partial a_2} \left[ -y \log a_2 - (1 - y) \log (1 - a_2) \right] ∂a2∂L=∂a2∂[−yloga2−(1−y)log(1−a2)]

通过对两个项分别求导,可以得到:
∂ L ∂ a 2 = − y a 2 + 1 − y 1 − a 2 \frac{\partial L}{\partial a_2} = -\frac{y}{a_2} + \frac{1 - y}{1 - a_2} ∂a2∂L=−a2y+1−a21−y

5. 化简

我们可以将上面的结果进一步化简。首先,将两个分数合并成一个分数:
∂ L ∂ a 2 = − ( y ( 1 − a 2 ) ) + ( 1 − y ) a 2 a 2 ( 1 − a 2 ) \frac{\partial L}{\partial a_2} = \frac{-(y (1 - a_2)) + (1 - y) a_2}{a_2 (1 - a_2)} ∂a2∂L=a2(1−a2)−(y(1−a2))+(1−y)a2

分子部分可以整理为:
− ( y − y a 2 ) + ( a 2 − y a 2 ) = a 2 − y -(y - y a_2) + (a_2 - y a_2) = a_2 - y −(y−ya2)+(a2−ya2)=a2−y

因此,最终得到的结果是:
∂ L ∂ a 2 = a 2 − y a 2 ( 1 − a 2 ) \frac{\partial L}{\partial a_2} = \frac{a_2 - y}{a_2 (1 - a_2)} ∂a2∂L=a2(1−a2)a2−y

6. 结合 sigmoid 函数的导数

根据链式法则,我们现在需要将损失函数对 a 2 a_2 a2 的导数与 a 2 a_2 a2 对 z 2 z_2 z2 的导数相乘。由于 ∂ a 2 ∂ z 2 = a 2 ( 1 − a 2 ) \frac{\partial a_2}{\partial z_2} = a_2 (1 - a_2) ∂z2∂a2=a2(1−a2),可以抵消掉前面结果中的分母 a 2 ( 1 − a 2 ) a_2 (1 - a_2) a2(1−a2)。

因此,最终的结果为:
∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y

7. 公式的直观理解

公式 ∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y 的含义是:损失函数对输出层输入值的导数 等于模型的预测值 a 2 a_2 a2 和真实标签 y y y 之间的差值。

这个结果很直观:

  • 如果预测值 a 2 a_2 a2 和真实值 y y y 很接近,那么导数接近于 0,说明此时的参数不需要大幅度调整。
  • 如果预测值 a 2 a_2 a2 和真实值 y y y 相差很大,导数会很大,表示需要显著调整权重,以减少误差。

总结:

公式 8-13 的推导过程基于交叉熵损失函数和 sigmoid 激活函数。通过应用链式法则,我们将损失函数的导数逐步分解成每个部分的导数,最终得到了损失函数对输出层输入值 z 2 z_2 z2 的导数,即 ∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y。这个公式表示损失函数的梯度等于模型输出与真实值的差值,用于指导神经网络的反向传播过程。

相关推荐
AIGC大时代1 小时前
方法建议ChatGPT提示词分享
人工智能·深度学习·chatgpt·aigc·ai写作
糯米导航1 小时前
ChatGPT Prompt 编写指南
人工智能·chatgpt·prompt
金融OG1 小时前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
Damon小智1 小时前
全面评测 DOCA 开发环境下的 DPU:性能表现、机器学习与金融高频交易下的计算能力分析
人工智能·机器学习·金融·边缘计算·nvidia·dpu·doca
赵孝正1 小时前
特征选择(机器学习)
人工智能·机器学习
QQ_7781329741 小时前
Pix2Pix:图像到图像转换的条件生成对抗网络深度解析
人工智能·神经网络
数据馅2 小时前
window系统annaconda中同时安装paddle和pytorch环境
人工智能·pytorch·paddle
高工智能汽车2 小时前
2025年新开局!谁在引领汽车AI风潮?
人工智能·汽车