神经网络反向传播交叉熵 损失函数对输出层激活值Z2的导数

本文是交叉熵损失函数为代表的两层神经网络的反向传播量化求导计算公式中的一个公式,单独拿出来做一下解释说明。


公式 8-13 是反向传播过程中的一个关键步骤,用于计算损失函数对输出层激活值的导数。这个公式来自于链式法则,结合了交叉熵损失函数和 sigmoid 激活函数的导数。下面我们详细解释公式 8-13 的推导过程。

公式 8-13 的表达式:

∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y

其中:

  • L L L 是损失函数,具体是交叉熵损失函数 L ( y , a 2 ) L(y, a_2) L(y,a2)。
  • z 2 z_2 z2 是输出层神经元的加权输入值(在应用 sigmoid 激活函数之前的值)。
  • a 2 a_2 a2 是输出层神经元的激活值,即应用 sigmoid 函数后的输出。
  • y y y 是真实标签。
  • 公式 8-13 表示的是损失函数 L L L 对输出层加权输入 z 2 z_2 z2 的导数。

推导步骤:

1. 交叉熵损失函数

交叉熵损失函数的表达式为(参考公式 8-11):
L ( y , a 2 ) = − [ y log ⁡ a 2 + ( 1 − y ) log ⁡ ( 1 − a 2 ) ] L(y, a_2) = -[y \log a_2 + (1 - y) \log(1 - a_2)] L(y,a2)=−[yloga2+(1−y)log(1−a2)]

其中:

  • y y y 是真实的标签, a 2 a_2 a2 是模型的输出(经过 sigmoid 激活函数的输出层激活值)。

我们希望通过反向传播来计算损失函数对输出层加权输入 z 2 z_2 z2 的导数。因此,我们需要结合交叉熵损失和 sigmoid 函数进行链式求导。

2. 激活函数(sigmoid)

sigmoid 函数的定义为:
a 2 = σ ( z 2 ) = 1 1 + e − z 2 a_2 = \sigma(z_2) = \frac{1}{1 + e^{-z_2}} a2=σ(z2)=1+e−z21

sigmoid 函数的导数可以通过如下推导得到:
d σ ( z 2 ) d z 2 = σ ( z 2 ) ( 1 − σ ( z 2 ) ) = a 2 ( 1 − a 2 ) \frac{d\sigma(z_2)}{dz_2} = \sigma(z_2) (1 - \sigma(z_2)) = a_2 (1 - a_2) dz2dσ(z2)=σ(z2)(1−σ(z2))=a2(1−a2)

其中,导数 d σ ( z 2 ) d z 2 \frac{d\sigma(z_2)}{dz_2} dz2dσ(z2) 表示激活值 a 2 a_2 a2 对加权输入 z 2 z_2 z2 的变化率。

3. 链式法则的应用

为了计算损失函数对 z 2 z_2 z2 的导数 ∂ L ∂ z 2 \frac{\partial L}{\partial z_2} ∂z2∂L,我们可以利用链式法则。根据链式法则,损失函数对 z 2 z_2 z2 的导数可以表示为:

∂ L ∂ z 2 = ∂ L ∂ a 2 ⋅ ∂ a 2 ∂ z 2 \frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} ∂z2∂L=∂a2∂L⋅∂z2∂a2

即:损失函数对 z 2 z_2 z2 的导数等于损失函数对 a 2 a_2 a2 的导数乘以 a 2 a_2 a2 对 z 2 z_2 z2 的导数。

4. 计算损失函数对 a 2 a_2 a2 的导数

根据交叉熵损失函数的公式,我们可以直接求出损失函数对 a 2 a_2 a2 的导数:
∂ L ∂ a 2 = ∂ ∂ a 2 [ − y log ⁡ a 2 − ( 1 − y ) log ⁡ ( 1 − a 2 ) ] \frac{\partial L}{\partial a_2} = \frac{\partial}{\partial a_2} \left[ -y \log a_2 - (1 - y) \log (1 - a_2) \right] ∂a2∂L=∂a2∂[−yloga2−(1−y)log(1−a2)]

通过对两个项分别求导,可以得到:
∂ L ∂ a 2 = − y a 2 + 1 − y 1 − a 2 \frac{\partial L}{\partial a_2} = -\frac{y}{a_2} + \frac{1 - y}{1 - a_2} ∂a2∂L=−a2y+1−a21−y

5. 化简

我们可以将上面的结果进一步化简。首先,将两个分数合并成一个分数:
∂ L ∂ a 2 = − ( y ( 1 − a 2 ) ) + ( 1 − y ) a 2 a 2 ( 1 − a 2 ) \frac{\partial L}{\partial a_2} = \frac{-(y (1 - a_2)) + (1 - y) a_2}{a_2 (1 - a_2)} ∂a2∂L=a2(1−a2)−(y(1−a2))+(1−y)a2

分子部分可以整理为:
− ( y − y a 2 ) + ( a 2 − y a 2 ) = a 2 − y -(y - y a_2) + (a_2 - y a_2) = a_2 - y −(y−ya2)+(a2−ya2)=a2−y

因此,最终得到的结果是:
∂ L ∂ a 2 = a 2 − y a 2 ( 1 − a 2 ) \frac{\partial L}{\partial a_2} = \frac{a_2 - y}{a_2 (1 - a_2)} ∂a2∂L=a2(1−a2)a2−y

6. 结合 sigmoid 函数的导数

根据链式法则,我们现在需要将损失函数对 a 2 a_2 a2 的导数与 a 2 a_2 a2 对 z 2 z_2 z2 的导数相乘。由于 ∂ a 2 ∂ z 2 = a 2 ( 1 − a 2 ) \frac{\partial a_2}{\partial z_2} = a_2 (1 - a_2) ∂z2∂a2=a2(1−a2),可以抵消掉前面结果中的分母 a 2 ( 1 − a 2 ) a_2 (1 - a_2) a2(1−a2)。

因此,最终的结果为:
∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y

7. 公式的直观理解

公式 ∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y 的含义是:损失函数对输出层输入值的导数 等于模型的预测值 a 2 a_2 a2 和真实标签 y y y 之间的差值。

这个结果很直观:

  • 如果预测值 a 2 a_2 a2 和真实值 y y y 很接近,那么导数接近于 0,说明此时的参数不需要大幅度调整。
  • 如果预测值 a 2 a_2 a2 和真实值 y y y 相差很大,导数会很大,表示需要显著调整权重,以减少误差。

总结:

公式 8-13 的推导过程基于交叉熵损失函数和 sigmoid 激活函数。通过应用链式法则,我们将损失函数的导数逐步分解成每个部分的导数,最终得到了损失函数对输出层输入值 z 2 z_2 z2 的导数,即 ∂ L ∂ z 2 = a 2 − y \frac{\partial L}{\partial z_2} = a_2 - y ∂z2∂L=a2−y。这个公式表示损失函数的梯度等于模型输出与真实值的差值,用于指导神经网络的反向传播过程。

相关推荐
l1t17 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华1 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu2 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师3 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8285 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成5 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃6 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)6 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao6 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶