【进阶OpenCV】 (20) --疲劳检测

文章目录

疲劳检测

使用OpenCV实现疲劳检测 通常依赖于面部特征分析,特别是眼睛的状态(如眼睛开合程度)以及闭眼的时间。

一、面部识别

通过Dlib库构造人脸检测器 ,用于检测人脸,然后通过shape_predictor()加载模型用于定位检测到的人脸的关键点:

python 复制代码
detector = dlib.get_frontal_face_detector() # 构造人脸检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 定位关键点模型
cap = cv2.VideoCapture(0)

二、主循环

1. 计算眼睛纵横比

通过euclidean_distances()函数计算两点间的距离:

python 复制代码
def eye_aspect_ratio(eye):
    """-----计算眼睛纵横比-----"""
    A = euclidean_distances(eye[1].reshape(1,2),eye[5].reshape(1,2))
    B = euclidean_distances(eye[2].reshape(1,2),eye[4].reshape(1,2))
    C = euclidean_distances(eye[0].reshape(1,2),eye[3].reshape(1,2))
    ear = ((A+B)/2.0) / C # 纵横比
    return ear
python 复制代码
COUNTER = 0 # 闭眼持续帧数统计
while True:
    ret,frame = cap.read()
    faces = detector(frame,0)
    for face in faces:
        shape = predictor(frame,face)# 获取关键点
        # 将关键点转换为坐标(x,y)的形式
        shape = np.array([[p.x,p.y] for p in shape.parts()])
        rightEye = shape[36:42] # 右眼,关键点索引从36到41
        leftEye = shape[42:48] # 左眼,关键点索引从42到47
        rightEAR = eye_aspect_ratio(rightEye) # 计算右眼纵横比
        leftEAR = eye_aspect_ratio(leftEye) # 计算左眼纵横比
        ear = (leftEAR + rightEAR) / 2.0 # 均值处理

2. 判断疲劳状态

当宽高比小于0.3,且连续50帧保持这个状态,则认定他处于疲劳状态:

python 复制代码
def cv2ADDChineseText(img,text,position,textColor=(0,255,0),textSize=30):
    """像图片中添加中文"""
    if (isinstance(img,np.ndarray)):
        img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(img)

    fontStyle = ImageFont.truetype("simfang.ttf",textSize,encoding="Utf-8")
    draw.text(position,text,textColor,font=fontStyle)
    return cv2.cvtColor(np.asarray(img),cv2.COLOR_BGR2RGB)

if ear < 0.3: # 小于0.3认为闭眼,也可能是眨眼
    COUNTER += 1
    if COUNTER >= 50:
        frame = cv2ADDChineseText(frame,"!!!危险!!!",(250,250))
# 宽高比 > 0.3,则计数器清零,解除疲劳标志
else:
    COUNTER = 0 # 闭眼次数清零

3. 绘制双眼凸包

将双眼绘制出来:

python 复制代码
def drawEye(eye): # 绘制眼眶凸包
    eyeHull = cv2.convexHull(eye)
    cv2.drawContours(frame,[eyeHull],-1,(0,255,0),1)

drawEye(leftEye) # 绘制左眼凸包
drawEye(rightEye) # 绘制右眼凸包

4. 显示眼睛闭合程度值

python 复制代码
info = "EAR:{:.2f}".format(ear[0][0])
frame = cv2ADDChineseText(frame,info,(0,30)) # 显示眼睛闭合程度值

5. 显示图像

python 复制代码
    cv2.imshow("Frame",frame)
    if cv2.waitKey(1) == 27:
        break

三、释放资源

python 复制代码
cv2.destroyAllWindows()
cap.release()

四、完整代码展示

python 复制代码
import numpy as np
import dlib
import cv2
from sklearn.metrics.pairwise import euclidean_distances
from PIL import Image,ImageDraw,ImageFont

def eye_aspect_ratio(eye):
    """-----计算眼睛纵横比-----"""
    A = euclidean_distances(eye[1].reshape(1,2),eye[5].reshape(1,2))
    B = euclidean_distances(eye[2].reshape(1,2),eye[4].reshape(1,2))
    C = euclidean_distances(eye[0].reshape(1,2),eye[3].reshape(1,2))
    ear = ((A+B)/2.0) / C # 纵横比
    return ear

def cv2ADDChineseText(img,text,position,textColor=(0,255,0),textSize=30):
    """像图片中添加中文"""
    if (isinstance(img,np.ndarray)):
        img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(img)

    fontStyle = ImageFont.truetype("simfang.ttf",textSize,encoding="Utf-8")
    draw.text(position,text,textColor,font=fontStyle)
    return cv2.cvtColor(np.asarray(img),cv2.COLOR_BGR2RGB)

def drawEye(eye): # 绘制眼眶凸包
    eyeHull = cv2.convexHull(eye)
    cv2.drawContours(frame,[eyeHull],-1,(0,255,0),1)

COUNTER = 0 # 闭眼持续帧数统计
detector = dlib.get_frontal_face_detector() # 构造人脸检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 定位关键点模型
cap = cv2.VideoCapture(0)

while True:
    ret,frame = cap.read()
    faces = detector(frame,0)
    for face in faces:
        shape = predictor(frame,face)# 获取关键点
        # 将关键点转换为坐标(x,y)的形式
        shape = np.array([[p.x,p.y] for p in shape.parts()])
        rightEye = shape[36:42] # 右眼,关键点索引从36到41
        leftEye = shape[42:48] # 左眼,关键点索引从42到47
        rightEAR = eye_aspect_ratio(rightEye) # 计算右眼纵横比
        leftEAR = eye_aspect_ratio(leftEye) # 计算左眼纵横比
        ear = (leftEAR + rightEAR) / 2.0 # 均值处理

        if ear < 0.3: # 小于0.3认为闭眼,也可能是眨眼
            COUNTER += 1
            if COUNTER >= 50:
                frame = cv2ADDChineseText(frame,"!!!危险!!!",(250,250))
        # 宽高比 > 0.3,则计数器清零,解除疲劳标志
        else:
            COUNTER = 0 # 闭眼次数清零
        drawEye(leftEye) # 绘制左眼凸包
        drawEye(rightEye) # 绘制右眼凸包
        info = "EAR:{:.2f}".format(ear[0][0])
        frame = cv2ADDChineseText(frame,info,(0,30)) # 显示眼睛闭合程度值
    cv2.imshow("Frame",frame)
    if cv2.waitKey(1) == 27:
        break
cv2.destroyAllWindows()
cap.release()

总结

本篇介绍了,如何通过人脸部眼睛的变化来简单的进行疲劳检测。

相关推荐
hunter2062064 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z5 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云6 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山9 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
冰万森9 小时前
【图像处理】——掩码
python·opencv·计算机视觉
tuan_zhang10 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚