矩阵matrix

点积

在 NumPy 中,dot 是矩阵或向量的点积(dot product)操作。

假设有两个向量a和 b,它们的点积定义为对应元素相乘,然后求和。公式如下:

例子:

点积的计算步骤是:

因此,a.dot(b) 返回的结果是 6。

dot 的含义:

  • 对于 1D 数组(向量),dot 表示向量的点积
  • 对于 2D 数组(矩阵),dot 表示矩阵乘法。

矩阵乘法

矩阵:

问题:

矩阵乘法。逐步分析:


numpy.linalg.inv()numpy.linalg.solve()

numpy.linalg.inv()numpy.linalg.solve() 都是用于解决线性代数问题的函数,但它们有不同的用途和计算方式。比较一下它们的区别:

1. linalg.inv(): 计算矩阵的逆矩阵

用法:
python 复制代码
import numpy as np
np.linalg.inv(A)
  • 场景: 当你需要明确知道矩阵的逆时使用。
示例:
python 复制代码
A = np.array([[1, 2], [3, 4]])
A_inv = np.linalg.inv(A)

这个代码会返回矩阵 ( A ) 的逆矩阵。

适用场景:
  • 当你需要求矩阵的逆时,使用 inv 函数。
  • 但是直接求逆并不总是最好的做法,因为逆矩阵的计算在数值上可能不稳定,特别是当矩阵接近奇异时。

2. linalg.solve(): 解线性方程组

用法:
python 复制代码
import numpy as np
np.linalg.solve(A, b)
  • 功能: 直接求解线性方程组 A * x = b 中的未知数向量 x。
  • 场景: 当你想要解某个线性方程组时,比直接计算逆矩阵效率更高且更稳定。
示例:
python 复制代码
A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])
x = np.linalg.solve(A, b)

这个代码会解出 A * x = b 中的 x 值。

适用场景:
  • 当你只需要解线性方程组时,linalg.solve() 是最有效率的选择,因为它内部使用了专门的数值方法,避免了求矩阵逆的额外开销。

总结:

  • linalg.inv(): 用于计算矩阵的逆。虽然你可以通过计算逆矩阵然后再与右侧的矩阵相乘来解线性方程组,但这是不推荐的做法,因为逆矩阵计算较慢且不稳定。

  • linalg.solve(): 直接求解线性方程组 ( A * x = b ),推荐用于解方程组的场景,速度更快且数值更稳定。

推荐 : 如果你的目的是解方程组,使用 linalg.solve() 而不是先求矩阵的逆再乘以结果。

相关推荐
刘一哥GIS2 分钟前
Windows环境搭建:PostGreSQL+PostGIS安装教程
数据库·python·arcgis·postgresql·postgis
西柚小萌新9 分钟前
【深入浅出PyTorch】--4.PyTorch基础实战
人工智能·pytorch·python
用户83562907805111 分钟前
掌控PDF页面:使用Python轻松实现添加与删除
后端·python
用户3721574261351 小时前
Python 实现 Excel 文件加密与保护
python
Derrick__11 小时前
Python访问数据库——使用SQLite
数据库·python·sqlite
总有刁民想爱朕ha1 小时前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理
小虎鲸001 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
加油吧zkf2 小时前
Python入门:从零开始的完整学习指南
开发语言·前端·python
杰瑞学AI2 小时前
我的全栈学习之旅:FastAPI (持续更新!!!)
后端·python·websocket·学习·http·restful·fastapi
用户3721574261352 小时前
Python 高效实现 Excel 与 CSV 互转:用自动化提升效率
python