矩阵matrix

点积

在 NumPy 中,dot 是矩阵或向量的点积(dot product)操作。

假设有两个向量a和 b,它们的点积定义为对应元素相乘,然后求和。公式如下:

例子:

点积的计算步骤是:

因此,a.dot(b) 返回的结果是 6。

dot 的含义:

  • 对于 1D 数组(向量),dot 表示向量的点积
  • 对于 2D 数组(矩阵),dot 表示矩阵乘法。

矩阵乘法

矩阵:

问题:

矩阵乘法。逐步分析:


numpy.linalg.inv()numpy.linalg.solve()

numpy.linalg.inv()numpy.linalg.solve() 都是用于解决线性代数问题的函数,但它们有不同的用途和计算方式。比较一下它们的区别:

1. linalg.inv(): 计算矩阵的逆矩阵

用法:
python 复制代码
import numpy as np
np.linalg.inv(A)
  • 场景: 当你需要明确知道矩阵的逆时使用。
示例:
python 复制代码
A = np.array([[1, 2], [3, 4]])
A_inv = np.linalg.inv(A)

这个代码会返回矩阵 ( A ) 的逆矩阵。

适用场景:
  • 当你需要求矩阵的逆时,使用 inv 函数。
  • 但是直接求逆并不总是最好的做法,因为逆矩阵的计算在数值上可能不稳定,特别是当矩阵接近奇异时。

2. linalg.solve(): 解线性方程组

用法:
python 复制代码
import numpy as np
np.linalg.solve(A, b)
  • 功能: 直接求解线性方程组 A * x = b 中的未知数向量 x。
  • 场景: 当你想要解某个线性方程组时,比直接计算逆矩阵效率更高且更稳定。
示例:
python 复制代码
A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])
x = np.linalg.solve(A, b)

这个代码会解出 A * x = b 中的 x 值。

适用场景:
  • 当你只需要解线性方程组时,linalg.solve() 是最有效率的选择,因为它内部使用了专门的数值方法,避免了求矩阵逆的额外开销。

总结:

  • linalg.inv(): 用于计算矩阵的逆。虽然你可以通过计算逆矩阵然后再与右侧的矩阵相乘来解线性方程组,但这是不推荐的做法,因为逆矩阵计算较慢且不稳定。

  • linalg.solve(): 直接求解线性方程组 ( A * x = b ),推荐用于解方程组的场景,速度更快且数值更稳定。

推荐 : 如果你的目的是解方程组,使用 linalg.solve() 而不是先求矩阵的逆再乘以结果。

相关推荐
代码or搬砖18 分钟前
HashMap源码
开发语言·python·哈希算法
囊中之锥.1 小时前
《机器学习SVM从零到精通:图解最优超平面与软间隔实战》
算法·机器学习·支持向量机
光羽隹衡1 小时前
集成学习之随机森林
随机森林·机器学习·集成学习
顽强卖力1 小时前
第二章:什么是数据分析师?
笔记·python·职场和发展·学习方法
啊巴矲2 小时前
小白从零开始勇闯人工智能:机器学习初级篇(随机森林)
人工智能·机器学习
格林威2 小时前
跨设备图像拼接:统一色彩偏差的8个核心策略,附OpenCV+Halcon实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
站大爷IP2 小时前
Python实现Excel数据自动化处理:从繁琐操作到智能流程的蜕变
python
BBB努力学习程序设计2 小时前
Python 进阶知识点精讲:上下文管理器(Context Manager)的原理与实战
python·pycharm
清水白石0082 小时前
《深入 super() 的世界:MRO 与 C3 线性化算法的全景解析与实战指南》
python
大厂技术总监下海2 小时前
Python 开发者的“新引擎”:Rust 编写的解释器,性能与安全兼得
python·开源