基于yolov5的手机屏幕缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

yolov5,手机屏幕缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于 YOLOv5 的手机屏幕缺陷检测系统是在 PyTorch 框架之下得以实现的。这是一个完备的项目,涵盖了诸多方面,其中包括代码部分,精心整理的数据集,训练完备的模型权重,详实的模型训练记录,直观友好的 UI 界面以及各类重要的模型指标(如准确率、精确率、召回率等等)。

该系统的 UI 界面是通过 tkinter 设计并成功实现的。该项目可在windows、linux(ubuntu,centos)、mac系统下运行,可外接usb摄像头或直接用笔记本摄像头实现摄像实时检测。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_anaconda和pycharm保姆级下载及配置-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

(二)项目介绍

1. 项目结构
2.模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练,即运行train.py文件

第三步:模型验证,当模型训练完后,运行val.py文件

第四步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​

部分数据展示:

​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面

​​​

b.图像检测界面
c.视频或摄像实时检测界面

4.模型训练和验证的一些指标及效果

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

若项目使用过程中出现问题,请及时交流!

相关推荐
峥嵘life18 分钟前
Android16 adb投屏工具Scrcpy介绍
android·开发语言·python·学习·web安全·adb
AI视觉网奇1 小时前
vscode 不能跳转 ERR_OSSL_EVP_BAD_DECRYPT
python
文心快码BaiduComate1 小时前
Comate分饰多角:全栈开发一个Python学习网站
前端·后端·python
雨声不在1 小时前
cronet从编译到修改之: 支持IP直连
python·网络协议·tcp/ip·cronet
2401_841495641 小时前
【机器学习】朴素贝叶斯法
人工智能·python·数学·算法·机器学习·概率论·朴素贝叶斯法
高-老师1 小时前
基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用
pytorch·深度学习·无人机
听潮阁1 小时前
Python 旅游数据分析平台【源码请评论区留言】
python·数据分析·旅游
付玉祥1 小时前
第 2 章 变量与基本数据类型
python·llm
扑克中的黑桃A1 小时前
Python快速入门专业版(八):字符串基础:创建、拼接与切片(10+实用代码案例)
python
时间醉酒1 小时前
逻辑回归(四):从原理到实战-训练,评估与应用指南
人工智能·python·算法·机器学习·逻辑回归