题解:AT_abc376_e [ABC376E] Max × Sum

题目翻译

给你两个长度为 N N N 的序列 A A A 和 B B B。再给你一个整数 K K K,让你求对于集合 \\lbrace\\ 1,\\ 2,\\ \\dots,\\ N\\ \\rbrace 的每一个长度为 K K K 的子集 S S S,求 \\displaystyle\\ \\left(\\max_{i\\ \\in\\ S}\\ A_i\\right)\\ \\times\\ \\left(\\sum_{i\\ \\in\\ S}\\ B_i\\right) 的最小值。有 T T T 组测试数据。

思路

子集是不一定连续的,在这个问题中,顺序也不重要,所以我们可以把序列按 A A A 从小到大排序。值得注意的是, A i A_i Ai 和 B i B_i Bi 是对应的,所以需要放到一个结构体里面,不然排完序之后就乱了。

排序的好处是我们在计算 A A A 中前 i i i 个元素选出 K K K 个数(第 i i i 个必须选)里面的最大值的时候可以直接用 A i A_i Ai,时间复杂度 O ( 1 ) O(1) O(1)。

然后我们的问题就只剩下一点点了。需要求和的那部分怎么算呢?因为要求最小值,所以肯定希望这个和越小越好。那最小值怎么维护呢?我在比赛的时候想到了动态规划,但是时间复杂度 O ( N ⋅ K ) O(N\cdot K) O(N⋅K),空间复杂度在压维了之后是 O ( K ) O(K) O(K),肯定会超时。

怎么优化呢?前面的思路都没有问题,就卡在这一步了。事实上,有个好东西叫堆,它可以帮助我们解决这个问题。不会手写堆可以用 STL 里面的优先队列。

建一个大根堆,先把 B 1 , B 2 , ... , B K − 1 B_1,B_2,\dots,B_{K-1} B1,B2,...,BK−1 放进去。然后对于 i = K , K + 1 , ... , N i=K,K+1,\dots,N i=K,K+1,...,N,考虑把它放进堆里会不会产生更好的答案。我们维护一个变量 s u m sum sum,它的初始值为 B B B 数组中第 1 1 1 至第 K − 1 K-1 K−1 个元素之和。每一次, B i B_i Bi 入队,用队列中所有数之和乘以最大值(前面说过怎么算)更新答案。然后,我们把堆中最大的那个数(即堆顶)弹出去。 s u m sum sum 的更新方式为:先加上 B i B_i Bi,再减去堆顶元素的值。

于是这样就 AC 了。

相关推荐
sTone8737518 分钟前
std::functional 使用场景
c++
hetao173383719 分钟前
2026-02-09~02-12 hetao1733837 的刷题记录
c++·算法
ADDDDDD_Trouvaille20 分钟前
2026.2.12——OJ72-74题
c++·算法
梵刹古音43 分钟前
【C++】函数重写
开发语言·c++
Titan20241 小时前
C++异常学习笔记
c++·笔记·学习
柒儿吖1 小时前
DDlog 高性能异步日志库在 OpenHarmony 的 lycium 适配与分步测试
c++·c#·openharmony
民国二十三画生1 小时前
C++(兼容 C 语言) 的标准输入语法,用来读取一行文本
c语言·开发语言·c++
柒儿吖1 小时前
基于 lycium 在 OpenHarmony 上交叉编译 utfcpp 完整实践
c++·c#·harmonyos
sTone873751 小时前
std::function/模板/裸函数指针选型指南
c++
无聊的小坏坏2 小时前
一文讲通:二分查找的边界处理
数据结构·c++·算法