2023年MathorCup高校数学建模挑战赛-大数据赛

问题 1 **分析:**针对问题1,由于数据量相对较大、且需要数据维度较多,所以需要利用优化聚类方法和优化预测算法对模型进行处理。首先将商家、仓库、商品等维度基于时间序列构建基于概率密度聚类分析模型,输出其符合最为相似的特征条件下的最优的分类。其次将出货量作为因变量,聚类相关因子作为自变量,构建基于SBO-LSTM神经网络出货量优化预测模型。再者分别将85%数据作为训练集,15%数据作为测试集,对模型进行训练和测试,输出模型的精度和1-wmape维度。最后各商家在各仓库的数据导入训练好的模型当中进行预测,输出预测出各商家在各仓库的商品2023-05-16至2023-05-30的需求量,并将其存放在相应的表格附件当中。

问题 2 **分析:**针对问题2,出现了新的维度数据,那么需要对新维度的数据和旧数据进行维度匹配处理。首先将附件5数据和附件1~4联合数据集作为样本数据,由于数据集巨大,为了提升算力、提高数据优化搜索,构建基于模糊概率联合聚类模型(GDM模型)。其次导入数据将GDM最优聚类集合求解出来。再者将GDM聚类结果作为自变量,出货量作为因因变量,为了更好的迭代时间与空间维度的数据,构建基于模糊神经网络出货量预测模型(GD-FNN模型)对不同商家在不同仓库的商品出货量进行预测。最后将相关数据到训练好的模型当中,输出2023-05-16至2023-05-30的预测值存放到表1相应的位置,并对预测的准确度进行评价。

相关推荐
Blossom.1188 分钟前
量子网络:构建未来通信的超高速“高速公路”
网络·opencv·算法·安全·机器学习·密码学·量子计算
qsmyhsgcs10 分钟前
Java程序员转人工智能入门学习路线图(2025版)
java·人工智能·学习·机器学习·算法工程师·人工智能入门·ai算法工程师
A林玖12 分钟前
【机器学习】朴素贝叶斯
人工智能·算法·机器学习
六边形战士DONK15 分钟前
神经网络基础[损失函数,bp算法,梯度下降算法 ]
人工智能·神经网络·算法
IT从业者张某某21 分钟前
机器学习-08-时序数据分析预测
人工智能·机器学习·数据分析
归去_来兮22 分钟前
GBDT算法原理及Python实现
机器学习
袁煦丞23 分钟前
AI视频生成神器Wan 2.1:cpolar内网穿透实验室第596个成功挑战
人工智能·程序员·远程工作
xMathematics38 分钟前
深度学习与SLAM特征提取融合:技术突破与应用前景
人工智能·深度学习
墨顿1 小时前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
xinxiyinhe1 小时前
2025年深度学习模型发展全景透视(基于前沿技术突破与开源生态演进的交叉分析)
人工智能·深度学习·开源