2023年MathorCup高校数学建模挑战赛-大数据赛

问题 1 **分析:**针对问题1,由于数据量相对较大、且需要数据维度较多,所以需要利用优化聚类方法和优化预测算法对模型进行处理。首先将商家、仓库、商品等维度基于时间序列构建基于概率密度聚类分析模型,输出其符合最为相似的特征条件下的最优的分类。其次将出货量作为因变量,聚类相关因子作为自变量,构建基于SBO-LSTM神经网络出货量优化预测模型。再者分别将85%数据作为训练集,15%数据作为测试集,对模型进行训练和测试,输出模型的精度和1-wmape维度。最后各商家在各仓库的数据导入训练好的模型当中进行预测,输出预测出各商家在各仓库的商品2023-05-16至2023-05-30的需求量,并将其存放在相应的表格附件当中。

问题 2 **分析:**针对问题2,出现了新的维度数据,那么需要对新维度的数据和旧数据进行维度匹配处理。首先将附件5数据和附件1~4联合数据集作为样本数据,由于数据集巨大,为了提升算力、提高数据优化搜索,构建基于模糊概率联合聚类模型(GDM模型)。其次导入数据将GDM最优聚类集合求解出来。再者将GDM聚类结果作为自变量,出货量作为因因变量,为了更好的迭代时间与空间维度的数据,构建基于模糊神经网络出货量预测模型(GD-FNN模型)对不同商家在不同仓库的商品出货量进行预测。最后将相关数据到训练好的模型当中,输出2023-05-16至2023-05-30的预测值存放到表1相应的位置,并对预测的准确度进行评价。

相关推荐
数科云13 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区13 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南14 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu14 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现14 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_14 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z14 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派15 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor15 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋15 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习