2023年MathorCup高校数学建模挑战赛-大数据赛

问题 1 **分析:**针对问题1,由于数据量相对较大、且需要数据维度较多,所以需要利用优化聚类方法和优化预测算法对模型进行处理。首先将商家、仓库、商品等维度基于时间序列构建基于概率密度聚类分析模型,输出其符合最为相似的特征条件下的最优的分类。其次将出货量作为因变量,聚类相关因子作为自变量,构建基于SBO-LSTM神经网络出货量优化预测模型。再者分别将85%数据作为训练集,15%数据作为测试集,对模型进行训练和测试,输出模型的精度和1-wmape维度。最后各商家在各仓库的数据导入训练好的模型当中进行预测,输出预测出各商家在各仓库的商品2023-05-16至2023-05-30的需求量,并将其存放在相应的表格附件当中。

问题 2 **分析:**针对问题2,出现了新的维度数据,那么需要对新维度的数据和旧数据进行维度匹配处理。首先将附件5数据和附件1~4联合数据集作为样本数据,由于数据集巨大,为了提升算力、提高数据优化搜索,构建基于模糊概率联合聚类模型(GDM模型)。其次导入数据将GDM最优聚类集合求解出来。再者将GDM聚类结果作为自变量,出货量作为因因变量,为了更好的迭代时间与空间维度的数据,构建基于模糊神经网络出货量预测模型(GD-FNN模型)对不同商家在不同仓库的商品出货量进行预测。最后将相关数据到训练好的模型当中,输出2023-05-16至2023-05-30的预测值存放到表1相应的位置,并对预测的准确度进行评价。

相关推荐
良策金宝AI3 分钟前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据13 分钟前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi7777742 分钟前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔1 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)1 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家1 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata2 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub2 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19912 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann