OpenCV视觉分析之运动分析(2)背景减除类:BackgroundSubtractorKNN的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

K-最近邻(K-nearest neighbours, KNN)基于的背景/前景分割算法。

该类实现了如 319中所述的 K-最近邻背景减除。如果前景像素的数量很少,则非常高效、

cv::BackgroundSubtractorKNN 是 OpenCV 中用于背景减除的一种具体实现,它是 cv::BackgroundSubtractor 基类的一个派生类。该类使用 K 最近邻(K-Nearest Neighbors, KNN)算法来检测前景物体。KNN 方法在背景建模方面具有较好的性能,特别是在处理光照变化和动态背景方面。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 创建一个 BackgroundSubtractorKNN 对象
    cv::Ptr< cv::BackgroundSubtractor > pBackSub = cv::createBackgroundSubtractorKNN();

    // 设置参数
  

    // 打开视频文件
    cv::VideoCapture capture( 0 );
    if ( !capture.isOpened() )
    {
        std::cerr << "Failed to open video file." << std::endl;
        return -1;
    }

    // 读取每一帧并处理
    cv::Mat frame, fgMask;
    while ( capture.read( frame ) )
    {
        // 应用背景减除
        pBackSub->apply( frame, fgMask );

        // 显示结果
        cv::imshow( "Frame", frame );
        cv::imshow( "FG Mask", fgMask );

        // 按 'q' 键退出
        if ( cv::waitKey( 30 ) == 'q' )
        {
            break;
        }
    }

    // 释放资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}

运行结果

相关推荐
RPA中国几秒前
谷雨互动赵乾坤 | AI答案时代生存法则:从流量变迁到GEO实践
人工智能
paopaokaka_luck5 分钟前
基于SpringBoot+Vue的数码交流管理系统(AI问答、协同过滤算法、websocket实时聊天、Echarts图形化分析)
vue.js·人工智能·spring boot·websocket·echarts
arron889927 分钟前
Visual Studio 2017(VS2017)可以编译 OpenCV 4.5.5 为 32 位(x86)版本
ide·opencv·visual studio
youngfengying39 分钟前
身体活动(physical activity)---深度学习
人工智能·深度学习
START_GAME1 小时前
语音合成系统---IndexTTS2:环境配置与实战
人工智能·语音识别
2501_930799241 小时前
访答知识库#Pdf转word#人工智能#Al编辑器#访答RAG#企业知识库,个人知识库,本地知识库,访答编辑器,访答浏览器……
人工智能
max5006001 小时前
多GPU数据并行训练中GPU利用率不均衡问题深度分析与解决方案
人工智能·机器学习·分类·数据挖掘
老坛程序员1 小时前
Coze 与 n8n 深度对比:AI智能体平台与工作流自动化的核心博弈
运维·人工智能·自动化
AI人工智能+1 小时前
药品经营许可证识别技术:通过深度学习算法实现资质文件的自动化识别与核验
人工智能·深度学习·ocr·药品经营许可证识别