sklearn.preprocessing 的 LabelEncoder 类来对标签进行编码讲解

假设我们有一个标签数据集,它包含了一些文本类别标签,如下所示:

复制代码
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']

我们希望将这些文本标签转换成数值,以便机器学习模型可以处理。`LabelEncoder` 就是用来做这个转换的工具。下面是使用 `LabelEncoder` 转换标签的过程:

  1. 首先,我们创建 `LabelEncoder` 的一个实例:
复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
  1. 然后,我们将这个实例拟合到我们的标签数据 上:fit 方法会扫描整个 labels 数组或序列,识别出所有的唯一标签。
复制代码
le.fit(labels)

此时,`LabelEncoder` 会检查所有的标签,并创建一个映射,将每个唯一的标签映射到一个整数。在这个例子中,映射关系可能如下:

  • 'bird' -> 0

  • 'cat' -> 1

  • 'dog' -> 2

  1. 接下来,我们使用 `LabelEncoder` 将原始标签转换成整数:
复制代码
label_numbers = le.transform(labels)
print(label_numbers)

这将输出:

1 2 1 0 2 0

如你所见,文本标签 'cat'、'dog' 和 'bird' 被转换成了整数 1、2 和 0。
值得注意的是,`LabelEncoder` 会按照它们第一次出现的顺序给标签分配数字。在这个例子中,'cat' 是第一个出现的,所以它被分配了数字 1;'dog' 是第二个出现的,所以它被分配了数字 2;'bird' 是第三个出现的,所以它被分配了数字 0。
此外,`LabelEncoder` 还可以用来逆转换,即将整数标签再转换回原始的文本标签。例如:

复制代码
original_labels = le.inverse_transform(label_numbers)
print(original_labels)

这将输出:

'cat' 'dog' 'cat' 'bird' 'dog' 'bird'

这样,我们就可以将模型预测的整数标签转换回人类可读的文本标签。

完整代码:

复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']
le.fit(labels)
label_numbers = le.transform(labels)
print(label_numbers)
original_labels = le.inverse_transform(label_numbers)
print(original_labels)
相关推荐
AndrewHZ6 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI6 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课8 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
chao_78917 分钟前
更灵活方便的初始化、清除方法——fixture【pytest】
服务器·自动化测试·python·pytest
lucky_lyovo18 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn22 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy26 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
心情好的小球藻1 小时前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥1 小时前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态