sklearn.preprocessing 的 LabelEncoder 类来对标签进行编码讲解

假设我们有一个标签数据集,它包含了一些文本类别标签,如下所示:

复制代码
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']

我们希望将这些文本标签转换成数值,以便机器学习模型可以处理。`LabelEncoder` 就是用来做这个转换的工具。下面是使用 `LabelEncoder` 转换标签的过程:

  1. 首先,我们创建 `LabelEncoder` 的一个实例:
复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
  1. 然后,我们将这个实例拟合到我们的标签数据 上:fit 方法会扫描整个 labels 数组或序列,识别出所有的唯一标签。
复制代码
le.fit(labels)

此时,`LabelEncoder` 会检查所有的标签,并创建一个映射,将每个唯一的标签映射到一个整数。在这个例子中,映射关系可能如下:

  • 'bird' -> 0

  • 'cat' -> 1

  • 'dog' -> 2

  1. 接下来,我们使用 `LabelEncoder` 将原始标签转换成整数:
复制代码
label_numbers = le.transform(labels)
print(label_numbers)

这将输出:

1 2 1 0 2 0

如你所见,文本标签 'cat'、'dog' 和 'bird' 被转换成了整数 1、2 和 0。
值得注意的是,`LabelEncoder` 会按照它们第一次出现的顺序给标签分配数字。在这个例子中,'cat' 是第一个出现的,所以它被分配了数字 1;'dog' 是第二个出现的,所以它被分配了数字 2;'bird' 是第三个出现的,所以它被分配了数字 0。
此外,`LabelEncoder` 还可以用来逆转换,即将整数标签再转换回原始的文本标签。例如:

复制代码
original_labels = le.inverse_transform(label_numbers)
print(original_labels)

这将输出:

'cat' 'dog' 'cat' 'bird' 'dog' 'bird'

这样,我们就可以将模型预测的整数标签转换回人类可读的文本标签。

完整代码:

复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']
le.fit(labels)
label_numbers = le.transform(labels)
print(label_numbers)
original_labels = le.inverse_transform(label_numbers)
print(original_labels)
相关推荐
深圳市恒星物联科技有限公司3 分钟前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
Shi_haoliu5 分钟前
python安装操作流程-FastAPI + PostgreSQL简单流程
python·postgresql·fastapi
ZH154558913115 分钟前
Flutter for OpenHarmony Python学习助手实战:API接口开发的实现
python·学习·flutter
断眉的派大星15 分钟前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
小宋102117 分钟前
Java 项目结构 vs Python 项目结构:如何快速搭一个可跑项目
java·开发语言·python
A尘埃23 分钟前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao25 分钟前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯26 分钟前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能
楚兴29 分钟前
MacBook M1 安装 OpenClaw 完整指南
人工智能·后端