sklearn.preprocessing 的 LabelEncoder 类来对标签进行编码讲解

假设我们有一个标签数据集,它包含了一些文本类别标签,如下所示:

复制代码
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']

我们希望将这些文本标签转换成数值,以便机器学习模型可以处理。`LabelEncoder` 就是用来做这个转换的工具。下面是使用 `LabelEncoder` 转换标签的过程:

  1. 首先,我们创建 `LabelEncoder` 的一个实例:
复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
  1. 然后,我们将这个实例拟合到我们的标签数据 上:fit 方法会扫描整个 labels 数组或序列,识别出所有的唯一标签。
复制代码
le.fit(labels)

此时,`LabelEncoder` 会检查所有的标签,并创建一个映射,将每个唯一的标签映射到一个整数。在这个例子中,映射关系可能如下:

  • 'bird' -> 0

  • 'cat' -> 1

  • 'dog' -> 2

  1. 接下来,我们使用 `LabelEncoder` 将原始标签转换成整数:
复制代码
label_numbers = le.transform(labels)
print(label_numbers)

这将输出:

1 2 1 0 2 0

如你所见,文本标签 'cat'、'dog' 和 'bird' 被转换成了整数 1、2 和 0。
值得注意的是,`LabelEncoder` 会按照它们第一次出现的顺序给标签分配数字。在这个例子中,'cat' 是第一个出现的,所以它被分配了数字 1;'dog' 是第二个出现的,所以它被分配了数字 2;'bird' 是第三个出现的,所以它被分配了数字 0。
此外,`LabelEncoder` 还可以用来逆转换,即将整数标签再转换回原始的文本标签。例如:

复制代码
original_labels = le.inverse_transform(label_numbers)
print(original_labels)

这将输出:

'cat' 'dog' 'cat' 'bird' 'dog' 'bird'

这样,我们就可以将模型预测的整数标签转换回人类可读的文本标签。

完整代码:

复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']
le.fit(labels)
label_numbers = le.transform(labels)
print(label_numbers)
original_labels = le.inverse_transform(label_numbers)
print(original_labels)
相关推荐
老胖闲聊3 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之3 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
lyaihao4 小时前
使用python实现奔跑的线条效果
python·绘图
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
ai大师5 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
小小爬虾5 小时前
关于datetime获取时间的问题
python
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试