sklearn.preprocessing 的 LabelEncoder 类来对标签进行编码讲解

假设我们有一个标签数据集,它包含了一些文本类别标签,如下所示:

labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']

我们希望将这些文本标签转换成数值,以便机器学习模型可以处理。`LabelEncoder` 就是用来做这个转换的工具。下面是使用 `LabelEncoder` 转换标签的过程:

  1. 首先,我们创建 `LabelEncoder` 的一个实例:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
  1. 然后,我们将这个实例拟合到我们的标签数据 上:fit 方法会扫描整个 labels 数组或序列,识别出所有的唯一标签。
le.fit(labels)

此时,`LabelEncoder` 会检查所有的标签,并创建一个映射,将每个唯一的标签映射到一个整数。在这个例子中,映射关系可能如下:

  • 'bird' -> 0

  • 'cat' -> 1

  • 'dog' -> 2

  1. 接下来,我们使用 `LabelEncoder` 将原始标签转换成整数:
label_numbers = le.transform(labels)
print(label_numbers)

这将输出:

[1 2 1 0 2 0]
如你所见,文本标签 'cat'、'dog' 和 'bird' 被转换成了整数 1、2 和 0。
值得注意的是,`LabelEncoder` 会按照它们第一次出现的顺序给标签分配数字。在这个例子中,'cat' 是第一个出现的,所以它被分配了数字 1;'dog' 是第二个出现的,所以它被分配了数字 2;'bird' 是第三个出现的,所以它被分配了数字 0。
此外,`LabelEncoder` 还可以用来逆转换,即将整数标签再转换回原始的文本标签。例如:

original_labels = le.inverse_transform(label_numbers)
print(original_labels)

这将输出:

['cat' 'dog' 'cat' 'bird' 'dog' 'bird']
这样,我们就可以将模型预测的整数标签转换回人类可读的文本标签。

完整代码:

from sklearn import preprocessing
le = preprocessing.LabelEncoder()
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']
le.fit(labels)
label_numbers = le.transform(labels)
print(label_numbers)
original_labels = le.inverse_transform(label_numbers)
print(original_labels)
相关推荐
lihuayong1 分钟前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨9 分钟前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡15 分钟前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河17 分钟前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-145518 分钟前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
豌豆花下猫25 分钟前
Python 潮流周刊#90:uv 一周岁了,优缺点分析(摘要)
后端·python·ai
終不似少年遊*30 分钟前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥39 分钟前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__44 分钟前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程
橘猫云计算机设计1 小时前
基于SSM的《计算机网络》题库管理系统(源码+lw+部署文档+讲解),源码可白嫖!
java·数据库·spring boot·后端·python·计算机网络·毕设