sklearn.preprocessing 的 LabelEncoder 类来对标签进行编码讲解

假设我们有一个标签数据集,它包含了一些文本类别标签,如下所示:

复制代码
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']

我们希望将这些文本标签转换成数值,以便机器学习模型可以处理。`LabelEncoder` 就是用来做这个转换的工具。下面是使用 `LabelEncoder` 转换标签的过程:

  1. 首先,我们创建 `LabelEncoder` 的一个实例:
复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
  1. 然后,我们将这个实例拟合到我们的标签数据 上:fit 方法会扫描整个 labels 数组或序列,识别出所有的唯一标签。
复制代码
le.fit(labels)

此时,`LabelEncoder` 会检查所有的标签,并创建一个映射,将每个唯一的标签映射到一个整数。在这个例子中,映射关系可能如下:

  • 'bird' -> 0

  • 'cat' -> 1

  • 'dog' -> 2

  1. 接下来,我们使用 `LabelEncoder` 将原始标签转换成整数:
复制代码
label_numbers = le.transform(labels)
print(label_numbers)

这将输出:

1 2 1 0 2 0

如你所见,文本标签 'cat'、'dog' 和 'bird' 被转换成了整数 1、2 和 0。
值得注意的是,`LabelEncoder` 会按照它们第一次出现的顺序给标签分配数字。在这个例子中,'cat' 是第一个出现的,所以它被分配了数字 1;'dog' 是第二个出现的,所以它被分配了数字 2;'bird' 是第三个出现的,所以它被分配了数字 0。
此外,`LabelEncoder` 还可以用来逆转换,即将整数标签再转换回原始的文本标签。例如:

复制代码
original_labels = le.inverse_transform(label_numbers)
print(original_labels)

这将输出:

'cat' 'dog' 'cat' 'bird' 'dog' 'bird'

这样,我们就可以将模型预测的整数标签转换回人类可读的文本标签。

完整代码:

复制代码
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
labels = ['cat', 'dog', 'cat', 'bird', 'dog', 'bird']
le.fit(labels)
label_numbers = le.transform(labels)
print(label_numbers)
original_labels = le.inverse_transform(label_numbers)
print(original_labels)
相关推荐
田井中律.10 小时前
多模态RAG实战指南
人工智能
wanglei20070811 小时前
生产者消费者
开发语言·python
清水白石00811 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
DX_水位流量监测11 小时前
大坝安全监测之渗流渗压位移监测设备技术解析
大数据·运维·服务器·网络·人工智能·安全
昵称已被吞噬~‘(*@﹏@*)’~11 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
Yeats_Liao11 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
2501_9418779811 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
老周聊架构11 小时前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测
酩酊仙人11 小时前
fastmcp构建mcp server和client
python·ai·mcp
AKAMAI11 小时前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·测试