程序员数学:用Python学透线性代数和微积分 中文目录

【程序员数学:用Python学透线性代数和微积分】

中文目录

第1章 通过代码学数学 1

1.1 使用数学和软件解决商业问题 2

1.1.1 预测金融市场走势 2

1.1.2 寻找优质交易 4

1.1.3 构建三维图形和动画 6

1.1.4 对物理世界建模 8

1.2 如何高效学习数学 9

1.2.1 Jane想学习数学 9

1.2.2 在数学课本中苦苦挣扎 10

1.3 用上你训练有素的左脑 11

1.3.1 使用正式的语言 11

1.3.2 构建你自己的计算器 12

1.3.3 用函数建立抽象概念 13

1.4 小结 14

第一部分 向量和图形

第2章 二维向量绘图 16

2.1 二维向量绘图 16

2.1.1 如何表示二维向量 18

2.1.2 用Python绘制二维图形 20

2.1.3 练习 23

2.2 平面向量运算 25

2.2.1 向量的分量和长度 28

2.2.2 向量与数相乘 29

2.2.3 减法、位移和距离 31

2.2.4 练习 34

2.3 平面上的角度和三角学 41

2.3.1 从角度到分量 42

2.3.2 Python中的三角学和弧度 46

2.3.3 从分量到角度 47

2.3.4 练习 50

2.4 向量集合的变换 57

2.4.1 组合向量变换 59

2.4.2 练习 60

2.5 用Matplotlib绘图 61

2.6 小结 62

第3章 上升到三维世界 63

3.1 在三维空间中绘制向量 64

3.1.1 用坐标表示三维向量 66

3.1.2 用Python进行三维绘图 66

3.1.3 练习 68

3.2 三维空间中的向量运算 70

3.2.1 添加三维向量 70

3.2.2 三维空间中的标量乘法 72

3.2.3 三维向量减法 72

3.2.4 计算长度和距离 73

3.2.5 计算角度和方向 74

3.2.6 练习 75

3.3 点积:测量向量对齐 78

3.3.1 绘制点积 78

3.3.2 计算点积 80

3.3.3 点积的示例 82

3.3.4 用点积测量角度 83

3.3.5 练习 85

3.4 向量积:测量定向区域 88

3.4.1 在三维空间中确定自己的朝向 88

3.4.2 找到向量积的方向 89

3.4.3 求向量积的长度 91

3.4.4 计算三维向量的向量积 92

3.4.5 练习 93

3.5 在二维平面上渲染三维对象 96

3.5.1 使用向量定义三维对象 97

3.5.2 二维投影 98

3.5.3 确定面的朝向和阴影 99

3.5.4 练习 101

3.6 小结 102

第4章 变换向量和图形 103

4.1 变换三维对象 105

4.1.1 绘制变换后的对象 105

4.1.2 组合向量变换 107

4.1.3 绕轴旋转对象 110

4.1.4 创造属于你自己的几何变换 113

4.2 线性变换 117

4.2.1 向量运算的不变性 117

4.2.2 图解线性变换 119

4.2.3 为什么要做线性变换 121

4.2.4 计算线性变换 124

4.2.5 练习 127

4.3 小结 132

第5章 使用矩阵计算变换 134

5.1 用矩阵表示线性变换 135

5.1.1 把向量和线性变换写成矩阵形式 135

5.1.2 矩阵与向量相乘 136

5.1.3 用矩阵乘法组合线性变换 138

5.1.4 实现矩阵乘法 140

5.1.5 用矩阵变换表示三维动画 141

5.1.6 练习 142

5.2 不同形状矩阵的含义 148

5.2.1 列向量组成的矩阵 149

5.2.2 哪些矩阵可以相乘 151

5.2.3 将方阵和非方阵视为向量函数 152

5.2.4 从三维到二维的线性映射投影 154

5.2.5 组合线性映射 156

5.2.6 练习 157

5.3 用矩阵平移向量 163

5.3.1 线性化平面平移 163

5.3.2 寻找做二维平移的三维矩阵 167

5.3.4 在四维世界里平移三维对象 170

5.4 小结 174

第6章 高维泛化 176

6.1 泛化向量的定义 177

6.1.1 为二维坐标向量创建一个类 178

6.1.3 使用同样的方法定义三维向量 179

6.1.4 构建向量基类 180

6.1.5 定义向量空间 182

6.1.6 对向量空间类进行单元测试 185

6.2 探索不同的向量空间 188

6.2.1 枚举所有坐标向量空间 188

6.2.2 识别现实中的向量 190

6.2.3 将函数作为向量处理 192

6.2.4 将矩阵作为向量处理 194

6.2.5 使用向量运算来操作图像 195

6.2.6 练习 198

6.3 寻找更小的向量空间 205

6.3.1 定义子空间 205

6.3.2 从单个向量开始 207

6.3.3 生成更大的空间 207

6.3.4 定义"维度"的概念 209

6.3.5 寻找函数向量空间的子空间 210

6.3.6 图像的子空间 212

6.3.7 练习 214

6.4 小结 220

第7章 求解线性方程组 222

7.1 设计一款街机游戏 223

7.1.1 游戏建模 223

7.1.2 渲染游戏 224

7.1.3 发射激光 225

7.1.4 练习 226

7.2 找到直线的交点 227

7.2.1 为直线选择正确的公式 227

7.2.2 直线的标准形式方程 229

7.2.3 线性方程组的矩阵形式 231

7.2.4 使用NumPy求解线性方程组 233

7.2.6 识别不可解方程组 234

7.2.7 练习 236

7.3 将线性方程泛化到更高维度 240

7.3.1 在三维空间中表示平面 240

7.3.2 在三维空间中求解线性方程组 243

7.3.4 计算维数、方程和解 245

7.3.5 练习 246

7.4 通过解线性方程来改变向量的基 253

7.4.1 在三维空间中求解 255

7.4.2 练习 256

7.5 小结 257

第二部分 微积分和物理仿真

第8章 理解变化率 261

8.1 根据体积计算平均流速 262

8.1.1 实现average_flow_rate函数 263

8.1.2 用割线描绘平均流速 264

8.1.3 负变化率 265

8.1.4 练习 266

8.2 绘制随时间变化的平均流速 266

8.2.1 计算不同时间段内的平均流速 267

8.2.2 绘制间隔流速图 268

8.2.3 练习 270

8.3 瞬时流速的近似值 271

8.3.1 计算小割线的斜率 272

8.3.2 构建瞬时流速函数 274

8.3.3 柯里化并绘制瞬时流速函数 277

8.4 体积变化的近似值 278

8.4.1 计算短时间间隔内的体积变化 279

8.4.2 将时间分割成更小的间隔 280

8.4.3 在流速图上绘制体积变化的图形 280

8.4.4 练习 283

8.5 绘制随时间变化的体积图 283

8.5.1 计算随时间变化的体积 283

8.5.2 绘制体积函数的黎曼和 285

8.5.3 提升近似结果的精确度 286

8.5.4 定积分和不定积分 288

8.6 小结 290

第9章 模拟运动的对象 291

9.1 模拟匀速运动 291

9.1.1 给小行星设置速度 292

9.1.2 更新游戏引擎,让小行星运动 292

9.1.3 保持小行星在屏幕上 293

9.1.4 练习 295

9.2 模拟加速 295

9.3 深入研究欧拉方法 296

9.3.1 手动计算欧拉方法 297

9.3.2 使用 Python 实现算法 298

9.4 用更小的时间步执行欧拉方法 300

9.5 小结 305

第10章 使用符号表达式 306

10.1 用计算机代数系统计算精确的导数 309

10.2.1 将表达式拆分成若干部分 310

10.2.3 使用Python语言实现表达式树 311

10.2.4 练习 313

10.3 符号表达式的应用 315

10.3.1 寻找表达式中的所有变量 317

10.3.3 表达式展开 319

10.3.4 练习 321

10.4 求函数的导数 323

10.4.1 幂的导数 324

10.4.2 变换后函数的导数 324

10.4.3 一些特殊函数的导数 326

10.4.4 乘积与组合的导数 327

10.4.5 练习 328

10.5 自动计算导数 330

10.5.1 实现表达式的导数方法 330

10.5.2 实现乘积法则和链式法则 332

10.5.4 练习 334

10.6 符号化积分函数 335

10.6.1 积分作为反导数 335

10.6.2 SymPy库介绍 336

10.6.3 练习 337

10.7 小结 338

第11章 模拟力场 339

11.1 用向量场对引力建模 339

11.2 引力场建模 342

11.2.1 定义一个向量场 343

11.2.2 定义一个简单的力场 344

11.3 把引力加入小行星游戏 345

11.3.1 让游戏中的对象感受到引力 346

11.3.2 练习 349

11.4 引入势能 350

11.4.1 定义势能标量场 351

11.4.2 将标量场绘制成热图 352

11.4.3 将标量场绘制成等高线图 354

11.5.1 用横截面测量陡度 354

11.5.2 计算偏导数 356

11.5.3 用梯度求图形的陡度 357

11.5.4 用势能的梯度计算力场 359

11.5.5 练习 361

11.6 小结 364

第12章 优化物理系统 365

12.1 测试炮弹模拟器 367

12.1.1 用欧拉方法建立模拟器 368

12.1.2 测量弹道的属性 369

12.1.3 探索不同的发射角度 370

12.1.4 练习 371

12.2 计算最佳射程 373

12.2.1 求炮弹射程关于发射角的函数 373

12.2.2 求最大射程 376

12.2.3 确定最大值和最小值 378

12.2.4 练习 379

12.3 增强模拟器 381

12.3.1 添加另一个维度 381

12.3.2 在炮弹周围建立地形模型 383

12.3.4 练习 386

12.4 利用梯度上升优化范围 388

12.4.1 绘制射程与发射参数的关系图 388

12.4.2 射程函数的梯度 389

12.4.3 利用梯度寻找上坡方向 390

12.4.4 实现梯度上升 392

12.4.5 练习 395

12.5 小结 399

第13章 用傅里叶级数分析声波 400

13.1 声波的组合和分解 401

13.2 用Python播放声波 402

13.2.1 产生第一个声音 402

13.2.2 演奏音符 405

13.2.3 练习 406

13.3 把正弦波转化为声音 406

13.3.1 用正弦函数制作音频 406

13.3.2 改变正弦函数的频率 408

13.3.3 对声波进行采样和播放 409

13.3.4 练习 411

13.4 组合声波得到新的声波 412

13.4.1 叠加声波的样本来构造和弦 412

13.4.2 两个声波叠加后的图形 413

13.4.3 构造正弦波的线性组合 414

13.4.4 用正弦波构造一个熟悉的函数 416

13.4.5 练习 419

13.5 将声波分解为傅里叶级数 419

13.5.1 用内积确定向量分量 420

13.5.2 定义周期函数的内积 421

13.5.3 实现一个函数来计算傅里叶系数 423

13.5.4 求方波的傅里叶系数 424

13.5.5 其他波形的傅里叶系数 424

13.5.6 练习 426

13.6 小结 428

第三部分 机器学习的应用

第14章 数据的函数拟合 431

14.1 衡量函数的拟合质量 433

14.1.1 计算数据与函数的距离 434

14.1.2 计算误差的平方和 436

14.1.3 计算汽车价格函数的代价 440

14.2 探索函数空间 441

14.2.1 绘制通过原点的直线的代价 442

14.2.2 所有线性函数的空间 443

14.2.3 练习 445

14.3 使用梯度下降法寻找最佳拟合线 445

14.3.1 缩放数据 445

14.3.2 找到并绘制最佳拟合线 446

14.3.3 练习 447

14.4 非线性函数拟合 448

14.4.1 理解指数函数的行为 448

14.4.2 寻找最佳拟合的指数函数 451

14.5 小结 453

第15章 使用logistic回归对数据分类 455

15.1 用真实数据测试分类函数 456

15.1.1 加载汽车数据 457

15.1.2 测试分类函数 458

15.1.3 练习 458

15.2 绘制决策边界 460

15.2.1 绘制汽车的向量空间 460

15.2.2 绘制更好的决策边界 461

15.2.3 实现分类函数 462

15.2.4 练习 463

15.3 将分类问题构造为回归问题 464

15.3.1 缩放原始汽车数据 464

15.3.2 衡量汽车的"宝马性" 465

15.3.3 sigmoid函数 467

15.3.4 将sigmoid函数与其他函数组合 468

15.3.5 练习 470

15.4 探索可能的logistic函数 471

15.4.1 参数化logistic函数 472

15.4.2 衡量logistic函数的拟合质量 472

15.4.3 测试不同的logistic函数 474

15.4.4 练习 475

15.5 寻找最佳logistic函数 477

15.5.1 三维中的梯度下降法 477

15.5.2 使用梯度下降法寻找最佳拟合 478

15.5.3 测试和理解最佳logistic分类器 479

15.5.4 练习 481

15.6 小结 483

第16章 训练神经网络 484

16.1 用神经网络对数据进行分类 485

16.2 手写数字图像分类 486

16.2.1 构建64维图像向量 487

16.2.2 构建随机数字分类器 488

16.2.3 测试数字分类器的表现 489

16.2.4 练习 490

16.3 设计神经网络 491

16.3.1 组织神经元和连接 492

16.3.2 神经网络数据流 492

16.3.3 计算激活值 495

16.3.4 用矩阵表示法计算激活值 498

16.4 用Python构建神经网络 499

16.4.1 用Python实现MLP类 500

16.4.2 评估MLP 502

16.4.3 测试MLP的分类效果 503

16.4.4 练习 504

16.5 使用梯度下降法训练神经网络 504

16.5.1 将训练构造为最小化问题 505

16.5.3 使用scikit-learn自动训练 507

16.6 使用反向传播计算梯度 509

16.6.1 根据最后一层的权重计算代价 509

16.6.2 利用链式法则计算最后一层权重的偏导数 510

16.6.3 练习 512

16.7 小结 513

附录A 准备Python(图灵社区下载)

附录B Python技巧和窍门(图灵社区下载)

附录C 使用OpenGL和PyGame加载和渲染三维模型(图灵社区下载)

附录D 数学符号参考(图灵社区下载

参阅:程序员数学:用Python学透线性代数和微积分

下载:随书下载=> 源代码文件.zip

解压 源代码文件.zip 后访问目录 Math-for-Programmers-master\

点击 Anaconda3:Jupyter Notebook 打开 *.ipynb 文件,可见源代码。

相关推荐
古希腊掌管学习的神2 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
梧桐树04294 小时前
python常用内建模块:collections
python
Dream_Snowar4 小时前
速通Python 第三节
开发语言·python
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
蓝天星空5 小时前
Python调用open ai接口
人工智能·python
睡觉狂魔er5 小时前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
jasmine s5 小时前
Pandas
开发语言·python
郭wes代码5 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7245 小时前
LILAC采样算法
人工智能·算法·机器学习