我们熟知自然数全加和,

推导过程如下,












这个解法并不难,非常容易看懂,但是并不容易真正理解。正负交错和无穷项计算,只需要保持方程的形态,就可以"预知"结果。但是这到底说的是什么意思?比如和
的结果相等,这个数值显然等于二分之一,但是若
为有限项,则它只能等于0或者等于1,那么有限项和无限项的差别到底是什么?或者说,所谓"无限",到底是什么意思?
现在让我们看一看这个问题的另一种解法,以便于了解"无限"的含义。
考虑数列和,

把它乘以一个不定的数量,先记住这件事,并且在最后要记得把它除掉,

这个数列到底有多长,是不知道的,但是我们知道一件事,就是若它可以有确定值,则它必须有周期性。它有确定值吗?因为不确定,所以它并没有确定值,但是
是我们后来加上的,
已经"吸收"了整个序列的不确定性,那么
就可以有确定值。我们先假定它有确定值,也就是我们要验证得到的
。既然有确定值,也就是有周期性,那么它就可以写成一个模的形式,或者说,用一个"圆"(具有周期)来描绘它。
具体来说,我们做一个由格子构成的直方图,第1列1个格子,长度为单位1,高度为单位1;第2列2个格子,长度为单位1,高度为2;第3列3个格子,长度为单位1,高度为3......现在的问题在于,这个直方图必须无限画下去,因为要实现。那么这个直方图怎么画?
答案是,没法画,我们终究只能截取到某一个。但是,别忘了周期性,也就是说,哪怕这个直方图要任意的"无限"画下去,它最终也有"首尾相接"的时候。而一个直方图如何实现"首尾相接"呢?很简单,就是把它首尾相接。也就是说,把画它的这张纸卷起来(哪怕无限长),让第1列格子和最后1列格子接在一起,就构成了一个螺旋楼梯形状的纸筒(类圆柱)。显然你看到了,这里出现了"升维"操作,我们把二维的平面上的直方图,升维为一个三维空间中的纸筒。之所以这样做,是因为我们就是这样定义维数上升的:二维中的"无限"在三维中是"有限"的。
这样一来,我们就得到了在三维空间中,这个直方图的形态。若把它的侧面都补全,它就是一个圆柱体,若只考虑垂直侧面的底面,它就是一个圆。
我们继续考虑这样一个类圆柱体,看看它的特性。
不难写出它的侧面积为,

这个数是多少很成问题,但还有更成问题的,这个几何体的高是多少?因为最终,高度就是无限的。这样一个侧面积和高度以及体积都无限的圆柱体,我们怎么才能知道它到底是什么样子的?
我们用的是单位长度1为格子的长度,高度从1开始递增的方式构造了这个直方图。我们也可以把高度的单位换成,让
去吸收高度的不确定性。这样的话虽然
和
都是不确定的(而且可以说非常大),但是它们的不确定性都是一维的,于是可以认为,



也就是两个无穷大可以认为是相等的,也就是说它们的不确定程度都是一样的。这时候,我们就可以大胆的认为,这个圆柱体的高,就是它两端数值的差,同时也是底面圆周的周长。
这个圆柱体的高有两种理解方式,


是因为,

对于无穷来说,0和1在这里并无本质差别,由此求得的是基于奇偶(0或者1)不确定性高度误差的上下限的。于是就可以写出,


分别解方程,




以及,





可见全部的取值为
。
为0和1都无法构成直方图以及圆柱体(但不代表不能构成别的东西,也就是说,结果可能是多值的),暂时不需要考虑;此时两种情况就有两种可能性,一种是2,一种是3。也就是说,虽然
和
都不确定,但是如果它们都是某个不定量的2倍或者3倍("逻辑或"对应于"相乘"),则可以建立圆柱体的高就是侧面积这种认识(无穷大都相等)。那么我们就可以认为,



也就是说,构成直方图,且允许直方图卷曲成类圆柱体,需要的是至少为6的倍数,也就是模6等于0。此处要进一步考虑不确定性(整数的奇偶性),则单位1需要缩减为自身的一半(后面有详细说明),那么
必须为12的倍数,也就是模12等于0(我们也可以考虑
前提下的所有两两组合,以及三三组合等等,结果仍然是6的倍数)。
回来看圆柱的底面,由于,它其实已经是一个圆面了。那么它就符合由实数构成周期的情况,也就是符合,

的虚数单位的定义,也就是,



由上述分析可知,"无限"到底是什么?就是主观上的"超越限制,不被限制",或者客观来说的不确定性。这种不确定性在数值的差异还比较小的时候,并不明显,当数值的差异极其巨大的时候,却体现为某种确定性。这有点像大数定理,当数量极为巨大的时候,事件的概率分布情况总是接近于正态分布这样一种确定的分布。
另外,从这个结果来说,可以简单的抽象出一个公式,

其中1/2是用来调整整数的奇偶不确定性的,这一点会在后面讨论。
所以回到最初的问题,到底什么决定了

答案是,1和-1反复出现的次数,它是一个巨大的数量。体现出来的是巨大数量的奇偶不确定性产生的确定性。
我们从这个研究中到底得到了什么?
确定微小而不确定数量的大量的不确定性,是如何构成最终的确定性的。毕竟我们不知道那个到底是多少,这个大量的数量是不确定的。但是构成这
个数的排列方式是确定的(比如奇偶相继),而最终产生的模量(余量)又是确定的了。所以简单说,并不需要追求数量上的绝对的确定性,也可以通过维数的升降来获得某种确定性。
自然数全加和,其实就是黎曼ζ函数的的情况。现在让我们看看其他情况,已知,

这是黎曼函数(也就是那个字母ζ读作zeta,泽塔)。我们先前讨论的是,

此处列出几个其它参数对应的表达式和数值结果,






在计算的时候,我们首先把单位数量做成直方图(它是二维的),然后将直方图卷曲为三维的类圆柱,然后把这个二维的面积,或者说一维的长度(因为每个直方图竖条的底边都是1,所以自动从二维降到一维),作为类圆柱的长度(高度差),也就是说,从低维的度量构造了高维的度量。
现在我们考虑,如果也做直方图,有没有可能通过卷曲从低维构造高维的度量。不难看出,如果一定要这样做,那么它的周长(或者侧面积)就是
,高度就是1,结果的奇偶不确定性仍然给出
,那么可以写出的是,

单位1缩减为原来的一半,那么结果必须是2的倍数,根据虚数单位定义,

也就是说,


可以测试一下,考虑到,

计算,



看来结果是正确的。也就是说,这个类圆柱的高度为。而这个
全部来自于不确定性的贡献。那么再考虑,

若不考虑不确定性,这个侧面积应当等于它的高度也就是,











套用公式,

也就是说,用低维度量构造高维度量的方法是可行的。虽然维数之间具有数量上巨大的差异,但是低维的某种模式,在高维上总有某种有意义的映射。
再看一个,


这个数值被认为是类圆柱的高度(差)或者面积(差)或者体积(差),按照先前的做法,可以列出两种情况,


分别计算,




还有,



确实有整数数值得以解出,但是看上去都"不太好看",不太像是升维的结果,那么让我们看看3次方也就是"体积"的情况,




如果考虑多值,则构造1维,2维,3维的三种情况,就存在如下的

一共6个结果我们只选择四个结果,

其中0是绝对值最小的结果。也就是说它升维之后获得的"体积"(升维后有意义的度量)最小可以为0,但是我们无法写出,

因为0不是有效的虚数单位的取值,而只能写出,

另外如果根据,


就可以得到,

也是可以接受的。这体现了此类函数的多值性。
综上所述,我们仅仅使用了升维的概念,来处理无限多项相加的问题,就得到了极为简单的算法和较为"靠谱"的结果。另外我们发现在这个前提下,结果也是多值的,具体是多少,则要根据选择的视角来决定。
如果我们进一步考虑黎曼函数的非平凡零点问题,也就是黎曼猜想,

用什么样的复数s才能让自然数s次方倒数的全加和卷曲升维之后能得到更上一个维度上的0值,也就是实现完整周期,或者模运算没有余量。
首先让我们敲定,代表不确定性的是怎么来的。
对于整数来说,它或者是奇数,或者是偶数,那么这个数的概率数值就是奇数加上偶数,各自一半概率加起来再模单位1的结果,也就是说,



所以对于整数来说,在概率基础上模上另一个整数周期,余量最可能的情况就是单位1的一半,也就是。
由此不难理解,

由此可知,见到就可以不管它是奇数还是偶数,于是直接说,它是一个自然数(非负整数)。黎曼猜想中,

是作为指数存在的,其中自然也可以被认为代表了自然数本身(在无穷前提下不知道奇偶而体现的模周期余量)而且它还是这个前提下的自然数单位,就相当于先前说的将单位1减半,以符合概率要求。此处不同于
,那么它就对应于余量的实数部分,而
对应于余量的虚数部分。这个余量不是出现在结果中,而是出现在指数上。指数上的余量使得结果中的余量为0。
所以实际上,我们并不是要证明什么平凡零点还是非平凡零点,我们实际上要证明的是项的数量,就是虚数单位(的倍数)。
也就是说,如果方程

有解(显然有解),且,也就是解在复数域里面(修正:不是完整的复数集合,而是复数集合中实部为自然数的子集,虚部可能也只是有理数,此处看不出虚部是否必须为实数,后文也需要此修正),那么,它就一定是

而虚数单位本身就是一个整数,它只是比较大而已,那么这个表达式就可以写成

也就是

通过重新安排实数部分和虚数部分的比例关系,我们还可以把它写成,

也就是说,实数部分完全剔除虚数单位的倍数,而这时候,它就是一个有限的整数。而任何有限整数都只能是偶数或者奇数,也就是说它在无限域之中的映射就是余量,

我们总可以保证,

那么,

所以余量

所以,

代回原式,

而这种

的形式,实际上就是最开始的,

在虚数单位本质为整数前提下的另一种写法,所以无论如何,所有的解当然都可以写在

里面。其中就代表了实数部分奇偶两种情况(也就是前面说到,它代表的是整数),而其它余量被合并到虚数部分的比例常数
里面了。要意识到虚数单位本质上就是一个比较大的整数,它要大于项数也就是大于最大的
。所以它无法在模运算的结果之中表达出来。但是如果给出更大的区间,则可以获得有限的数值。既然如此,我们总可以通过有限次的分裂和重组将虚数单位表现为一个对于
取模得到的更小的余量,以及一个不一定为整数(大多数情况下为有理数)的倍数和虚数单位的乘积。
所以,函数的平凡零点,

显然也在

之中,只是

至于如何将换成
的形式,决定于
和
的关系,这里就不具体推导了。
若还有其它解,当然也一定在,

范围(也就是全体复数)里面,只是需要找到对应关系罢了。由此而言,黎曼猜想试图告诉我们的只有一个很简单的原理:虚数单位是实在的,它具体是多少并不重要,它只是总是大于你能想象的最大的数值而已。
至此可以推断,函数的非平凡零点,当然会全部出现在

这条线上。若确定了虚数单位的大小,则实际上平凡零点也一样在这条线上。不仅如此,所有此类方程的解都在这条线上,因为这条线就是在给定虚数单位大小前提下的全体复数的集合。
所以,这个问题应该反过来理解:那些在上的平凡零点,才是方程的特殊解(非平凡零点),而所谓的非平凡零点(也就是在
上的),才是普通而正常的解。
最后,让我们讨论一下数集的由来。
从正整数开始,首先,有1,2,3......这些正整数,用来计量事物的个数或者事件的次数。然后,有了一定的数量之后,就可以创造负整数,比如-1,-2,-3......这些负整数可以对应于,比某个给定数量少多少,或者还差多少就到达给定数量。比如给定数量为10,那么-3就对应于7;给定数量是变化的,那么负整数对应的真实数值就是变化的,所以若正整数可以是绝对量或者相对量,那么负整数只能是相对量。负整数的出现,也就是比给定数量少了多少,进一步定义了0,也就是比给定数量不缺少任何数量,或者说,就是给定数量本身。比如说,比给定数量10,不缺少任何数量,那就是10本身,或者说比10少0,就是10本身。现在有了正整数,负整数以及0,这就构造了整数集。我们可以继续考虑它们的关系,比如任何两个整数相比较大小而只基于彼此的大小作为单位,却不基于共同的单位,比如3和7比较得到3/7,或者9和4比较得到9/4,它们的比较就可以构成一种新的结果,这个结果就叫有理数。这些相互比较的数都彼此相差不是太远,所以比较的结果也就是差异,并不接近于0。既然有这种情况,就一定有不同的情况,也就是说,如果两个整数或者有理数之间的差异巨大,以至于差异和其中较大的几乎相等,那么这种比较结果,和它的倒数互相观察,就成了几乎彼此不可见的状态,而这种状态就叫正交。能够实现正交的两个数,其中大者已经超出了观测范围之外,以至于小者与大者的比值,可认为是0,其中大者的大小就定义了虚数单位。虚数单位是这种比较关系之中大者超越可观测极限之后的对应物,因为超越观测极限之后的大小都可以认为没有区别,所以使用虚数单位作为这些更大数量的统称,而这个数量的倒数,显然也超出了较小观测范围的极限,成为观察意义上的无穷小,或者差异意义上的0。此时我们就定义了复数集,其中实数是观察范围之内的数量的度量,而虚数则是观察范围之外的度量。这种观测内外的差异构成正交关系,体现为投影为0的无关性;若将一个数量分成两个部分,这两个看似不相关的部分之间构成正交关系并被测量,并将这种测量回归到观测范围,这就得到了无理数,比如2的平方根。有理数和无理数构成实数集。要指出的是,虚数单位先于无理数出现。虽然无理数也并不虚,但是若无超越观测之外的虚数,无理数是无法获得的。
那么,还有没有更大范围的数呢?从观测角度来说,观测范围之内和观测范围之外,这就已经涵盖了所有关于观测的可能性,应该没有其它数了,毕竟数是用来描述观测的,或者说是用来度量世界的。