Sampling采样与Virtual Columns虚拟列

1.大数据体系下,在真正的企业环境中,很容易出现很大的表,比如体积达到 TB 级别.对这种表一个简单的 SELECT * 都会非常的慢,哪怕 LIMIT 10 想要看 10 条数据,也会走 MapReduce 流程

这个时间等待是不合适的.Hive 提供的快速抽样的语法,可以快速从大表中随机抽取一些数据供用户查看。

2.TABLESAMPLE 函数

语法 1 ,基于随机分桶抽样:

SELECT ... FROM tbl TABLESAMPLE(BUCKET x OUT OF y ON(colname | rand()))

• y 表示将表数据随机划分成 y 份( y 个桶)

• x 表示从 y 里面随机抽取 x 份数据作为取样

• colname 表示随机的依据基于某个列的值

• rand() 表示随机的依据基于整行

实例:

SELECT username,orderId,totalmoney FROM orders TABLESAMPLE(BUCKET 1 OUT OF 10 ON orders.username);

SELECT * FROM orders TABLESAMPLE(BUCKET 1 OUT OF 10 ON rand());

用rand()函数随机,所以select结果不一样

语法 2 ,基于数据块抽样SELECT ... FROM tbl TABLESAMPLE(num ROWS | num PERCENT | num(K|M|G));

num ROWS 表示抽样 num 条数据

num PERCENT 表示抽样 num 百分百比例的数据

num(K|M|G) 表示抽取 num 大小的数据,单位可以是 K 、 M 、 G 表示 KB 、 MB 、 GB

无法做到随机,只是按照数据顺序从前向后取。

3.Virtual Columns虚拟列

虚拟列是 Hive 内置的可以在查询语句中使用的特殊标记,可以查询数据本身的详细参数。

Hive 目前可用 3 个虚拟列:

INPUT__FILE__NAME,显示数据行所在的具体文件

BLOCK__OFFSET__INSIDE__FILE,显示数据行所在文件的偏移量

ROW__OFFSET__INSIDE__BLOCK,显示数据所在 HDFS块的偏移量

此虚拟列需要设置:SET hive.exec.rowoffset=true才可使用

SET hive.exec.rowoffset=true

SELECT *, INPUT__FILE__NAME, BLOCK__OFFSET__INSIDE__FILE, ROW__OFFSET__INSIDE__BLOCK FROM course;

虚拟列的作用:更精准的查看到具体每一条数据在存储上的详细参数细节

虚拟列不仅仅可以用于 SELECT ,在 WHERE 、 GROUP BY 等均可使用

实例:

SELECT *, BLOCK__OFFSET__INSIDE__FILE FROM course WHERE BLOCK__OFFSET__INSIDE__FILE > 50;

SELECT INPUT__FILE__NAME, COUNT(*) FROM orders GROUP BY INPUT__FILE__NAME;

相关推荐
好吃的肘子28 分钟前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
招风的黑耳1 小时前
Axure设计的“广东省网络信息化大数据平台”数据可视化大屏
大数据·信息可视化·原型·数据可视化
今天我又学废了1 小时前
Spark,数据清洗
大数据
joker D8882 小时前
【C++】深入理解 unordered 容器、布隆过滤器与分布式一致性哈希
c++·分布式·哈希算法
CET中电技术2 小时前
“光伏+储能+智能调控”,CET中电技术分布式智能微网方案如何实现?
分布式·储能·光伏
野曙2 小时前
快速选择算法:优化大数据中的 Top-K 问题
大数据·数据结构·c++·算法·第k小·第k大
Akamai中国3 小时前
分布式AI推理的成功之道
人工智能·分布式·云原生·云计算·云服务·云平台·云主机
电商数据girl3 小时前
酒店旅游类数据采集API接口之携程数据获取地方美食品列表 获取地方美餐馆列表 景点评论
java·大数据·开发语言·python·json·旅游
星星点点洲3 小时前
【RabbitMQ】消息丢失问题排查与解决
分布式·rabbitmq
OJAC近屿智能3 小时前
ChatGPT再升级!
大数据·人工智能·百度·chatgpt·近屿智能