矩阵迹(Trace)的性质及简单推导

1. 基础定义

迹(Trace) 是一个矩阵的对角线元素之和。对于矩阵 A A A,其迹定义为:

Trace ( A ) = ∑ i A i i \text{Trace}(A) = \sum_{i} A_{ii} Trace(A)=i∑Aii

迹的一个重要性质是:

Trace ( A B ) = Trace ( B A ) \text{Trace}(A B) = \text{Trace}(B A) Trace(AB)=Trace(BA)

即两个矩阵相乘后的迹不依赖于它们的顺序。

2. 迹对矩阵的导数

考虑矩阵 X X X,我们推导一些常见的迹函数的导数公式。

2.1 对 Trace ( A X ) \text{Trace}(A X) Trace(AX) 求导

假设 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。我们计算 ∂ ∂ X Trace ( A X ) \frac{\partial}{\partial X} \text{Trace}(A X) ∂X∂Trace(AX):

Trace ( A X ) = ∑ i , j A i j X j i \text{Trace}(A X) = \sum_{i,j} A_{ij} X_{ji} Trace(AX)=i,j∑AijXji

对 X X X 求导:

∂ ∂ X k l Trace ( A X ) = A l k \frac{\partial}{\partial X_{kl}} \text{Trace}(A X) = A_{lk} ∂Xkl∂Trace(AX)=Alk

将其转换为矩阵形式:

∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

2.2 对 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX) 求导

考虑更复杂的形式 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX),其中 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。

展开迹:

Trace ( X T A X ) = ∑ i , j , k X k i A i j X k j \text{Trace}(X^T A X) = \sum_{i,j,k} X_{ki} A_{ij} X_{kj} Trace(XTAX)=i,j,k∑XkiAijXkj

对 X p q X_{pq} Xpq 求导:

∂ ∂ X p q ∑ i , j , k X k i A i j X k j = A q q X p q + X p q A q q T \frac{\partial}{\partial X_{pq}} \sum_{i,j,k} X_{ki} A_{ij} X_{kj} = A_{qq} X_{pq} + X_{pq} A_{qq}^T ∂Xpq∂i,j,k∑XkiAijXkj=AqqXpq+XpqAqqT

综合所有项后,得到:

∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

2.3 总结迹的导数性质

  1. ∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

    • 迹函数可以通过矩阵元素的线性组合进行转换,导数为 A A A 的转置。
  2. ∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

    • 二次型矩阵的迹求导需要分别对矩阵 X X X 的左右项进行求导,并合并结果。

备注

个人水平有限,有问题随时交流~

相关推荐
淘小白_TXB219610 小时前
头条号矩阵运营经验访谈记录
线性代数·矩阵
智者知已应修善业1 天前
【矩阵找最大小所在位置】2022-11-13
c语言·c++·经验分享·笔记·算法·矩阵
semantist@语校1 天前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
deephub1 天前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
时空无限2 天前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
hn小菜鸡2 天前
LeetCode 3643.垂直翻转子矩阵
算法·leetcode·矩阵
张晓~183399481212 天前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
The_Killer.2 天前
格密码--从FFT到NTT(附源码)
学习·线性代数·密码学·格密码
小李独爱秋2 天前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模
听情歌落俗2 天前
MATLAB3-1变量-台大郭彦甫
开发语言·笔记·算法·matlab·矩阵