矩阵迹(Trace)的性质及简单推导

1. 基础定义

迹(Trace) 是一个矩阵的对角线元素之和。对于矩阵 A A A,其迹定义为:

Trace ( A ) = ∑ i A i i \text{Trace}(A) = \sum_{i} A_{ii} Trace(A)=i∑Aii

迹的一个重要性质是:

Trace ( A B ) = Trace ( B A ) \text{Trace}(A B) = \text{Trace}(B A) Trace(AB)=Trace(BA)

即两个矩阵相乘后的迹不依赖于它们的顺序。

2. 迹对矩阵的导数

考虑矩阵 X X X,我们推导一些常见的迹函数的导数公式。

2.1 对 Trace ( A X ) \text{Trace}(A X) Trace(AX) 求导

假设 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。我们计算 ∂ ∂ X Trace ( A X ) \frac{\partial}{\partial X} \text{Trace}(A X) ∂X∂Trace(AX):

Trace ( A X ) = ∑ i , j A i j X j i \text{Trace}(A X) = \sum_{i,j} A_{ij} X_{ji} Trace(AX)=i,j∑AijXji

对 X X X 求导:

∂ ∂ X k l Trace ( A X ) = A l k \frac{\partial}{\partial X_{kl}} \text{Trace}(A X) = A_{lk} ∂Xkl∂Trace(AX)=Alk

将其转换为矩阵形式:

∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

2.2 对 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX) 求导

考虑更复杂的形式 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX),其中 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。

展开迹:

Trace ( X T A X ) = ∑ i , j , k X k i A i j X k j \text{Trace}(X^T A X) = \sum_{i,j,k} X_{ki} A_{ij} X_{kj} Trace(XTAX)=i,j,k∑XkiAijXkj

对 X p q X_{pq} Xpq 求导:

∂ ∂ X p q ∑ i , j , k X k i A i j X k j = A q q X p q + X p q A q q T \frac{\partial}{\partial X_{pq}} \sum_{i,j,k} X_{ki} A_{ij} X_{kj} = A_{qq} X_{pq} + X_{pq} A_{qq}^T ∂Xpq∂i,j,k∑XkiAijXkj=AqqXpq+XpqAqqT

综合所有项后,得到:

∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

2.3 总结迹的导数性质

  1. ∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

    • 迹函数可以通过矩阵元素的线性组合进行转换,导数为 A A A 的转置。
  2. ∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

    • 二次型矩阵的迹求导需要分别对矩阵 X X X 的左右项进行求导,并合并结果。

备注

个人水平有限,有问题随时交流~

相关推荐
We་ct1 小时前
LeetCode 54. 螺旋矩阵:两种解法吃透顺时针遍历逻辑
前端·算法·leetcode·矩阵·typescript
weisian1516 小时前
进阶篇-7-数学篇-6--向量、矩阵、张量在 AI 中的运算与应用:解锁智能的“计算语法”
人工智能·线性代数·矩阵·向量·ai运算
独自破碎E6 小时前
【前缀和】LCR_013_二维区域和检索-矩阵不可变
线性代数·矩阵
香芋Yu6 小时前
【机器学习教程】第03章:SVD与矩阵分解
笔记·机器学习·矩阵
香芋Yu8 小时前
【机器学习教程】第02章:线性代数基础【上】
笔记·线性代数·机器学习
矢志航天的阿洪1 天前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
人机与认知实验室1 天前
人机环境系统矩阵的“秩”
线性代数·矩阵
闪电麦坤951 天前
Leecode热题100:矩阵置零(矩阵)
线性代数·算法·矩阵
人机与认知实验室1 天前
人机环境系统矩阵典型案例分析
线性代数·矩阵
山楂树の1 天前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归