矩阵迹(Trace)的性质及简单推导

1. 基础定义

迹(Trace) 是一个矩阵的对角线元素之和。对于矩阵 A A A,其迹定义为:

Trace ( A ) = ∑ i A i i \text{Trace}(A) = \sum_{i} A_{ii} Trace(A)=i∑Aii

迹的一个重要性质是:

Trace ( A B ) = Trace ( B A ) \text{Trace}(A B) = \text{Trace}(B A) Trace(AB)=Trace(BA)

即两个矩阵相乘后的迹不依赖于它们的顺序。

2. 迹对矩阵的导数

考虑矩阵 X X X,我们推导一些常见的迹函数的导数公式。

2.1 对 Trace ( A X ) \text{Trace}(A X) Trace(AX) 求导

假设 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。我们计算 ∂ ∂ X Trace ( A X ) \frac{\partial}{\partial X} \text{Trace}(A X) ∂X∂Trace(AX):

Trace ( A X ) = ∑ i , j A i j X j i \text{Trace}(A X) = \sum_{i,j} A_{ij} X_{ji} Trace(AX)=i,j∑AijXji

对 X X X 求导:

∂ ∂ X k l Trace ( A X ) = A l k \frac{\partial}{\partial X_{kl}} \text{Trace}(A X) = A_{lk} ∂Xkl∂Trace(AX)=Alk

将其转换为矩阵形式:

∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

2.2 对 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX) 求导

考虑更复杂的形式 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX),其中 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。

展开迹:

Trace ( X T A X ) = ∑ i , j , k X k i A i j X k j \text{Trace}(X^T A X) = \sum_{i,j,k} X_{ki} A_{ij} X_{kj} Trace(XTAX)=i,j,k∑XkiAijXkj

对 X p q X_{pq} Xpq 求导:

∂ ∂ X p q ∑ i , j , k X k i A i j X k j = A q q X p q + X p q A q q T \frac{\partial}{\partial X_{pq}} \sum_{i,j,k} X_{ki} A_{ij} X_{kj} = A_{qq} X_{pq} + X_{pq} A_{qq}^T ∂Xpq∂i,j,k∑XkiAijXkj=AqqXpq+XpqAqqT

综合所有项后,得到:

∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

2.3 总结迹的导数性质

  1. ∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

    • 迹函数可以通过矩阵元素的线性组合进行转换,导数为 A A A 的转置。
  2. ∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

    • 二次型矩阵的迹求导需要分别对矩阵 X X X 的左右项进行求导,并合并结果。

备注

个人水平有限,有问题随时交流~

相关推荐
池央26 分钟前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~3 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_3 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ3 小时前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink19 小时前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
数智工坊20 小时前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵
AI科技星20 小时前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
deep_drink1 天前
【基础知识二】彻底读懂拉普拉斯矩阵 (Laplacian)
人工智能·深度学习·线性代数·矩阵
sonadorje1 天前
标量投影和向量投影
线性代数
Amber勇闯数分1 天前
【Hive】基于物品协同过滤 [ ItemCF ] 推荐课程-余弦相似度计算
大数据·数据仓库·hive·hadoop·矩阵