矩阵迹(Trace)的性质及简单推导

1. 基础定义

迹(Trace) 是一个矩阵的对角线元素之和。对于矩阵 A A A,其迹定义为:

Trace ( A ) = ∑ i A i i \text{Trace}(A) = \sum_{i} A_{ii} Trace(A)=i∑Aii

迹的一个重要性质是:

Trace ( A B ) = Trace ( B A ) \text{Trace}(A B) = \text{Trace}(B A) Trace(AB)=Trace(BA)

即两个矩阵相乘后的迹不依赖于它们的顺序。

2. 迹对矩阵的导数

考虑矩阵 X X X,我们推导一些常见的迹函数的导数公式。

2.1 对 Trace ( A X ) \text{Trace}(A X) Trace(AX) 求导

假设 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。我们计算 ∂ ∂ X Trace ( A X ) \frac{\partial}{\partial X} \text{Trace}(A X) ∂X∂Trace(AX):

Trace ( A X ) = ∑ i , j A i j X j i \text{Trace}(A X) = \sum_{i,j} A_{ij} X_{ji} Trace(AX)=i,j∑AijXji

对 X X X 求导:

∂ ∂ X k l Trace ( A X ) = A l k \frac{\partial}{\partial X_{kl}} \text{Trace}(A X) = A_{lk} ∂Xkl∂Trace(AX)=Alk

将其转换为矩阵形式:

∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

2.2 对 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX) 求导

考虑更复杂的形式 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX),其中 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。

展开迹:

Trace ( X T A X ) = ∑ i , j , k X k i A i j X k j \text{Trace}(X^T A X) = \sum_{i,j,k} X_{ki} A_{ij} X_{kj} Trace(XTAX)=i,j,k∑XkiAijXkj

对 X p q X_{pq} Xpq 求导:

∂ ∂ X p q ∑ i , j , k X k i A i j X k j = A q q X p q + X p q A q q T \frac{\partial}{\partial X_{pq}} \sum_{i,j,k} X_{ki} A_{ij} X_{kj} = A_{qq} X_{pq} + X_{pq} A_{qq}^T ∂Xpq∂i,j,k∑XkiAijXkj=AqqXpq+XpqAqqT

综合所有项后,得到:

∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

2.3 总结迹的导数性质

  1. ∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

    • 迹函数可以通过矩阵元素的线性组合进行转换,导数为 A A A 的转置。
  2. ∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

    • 二次型矩阵的迹求导需要分别对矩阵 X X X 的左右项进行求导,并合并结果。

备注

个人水平有限,有问题随时交流~

相关推荐
跨境摸鱼1 天前
TikTok多账号风控:找对安全支点,解锁规模化运营
大数据·安全·矩阵·重构·跨境电商
咚咚王者1 天前
人工智能之数学基础 线性代数:第五章 张量
人工智能·线性代数
跨境卫士—小依1 天前
打破认知牢笼:合规新纪元,运营成本如何变身增长引擎?
大数据·矩阵·跨境电商·亚马逊·防关联
拉姆哥的小屋1 天前
基于多模态深度学习的城市公园社交媒体评论智能分析系统——从BERTopic主题建模到CLIP图文一致性的全栈实践
人工智能·python·深度学习·矩阵·媒体
RickyWasYoung1 天前
【笔记】矩阵的谱半径
笔记·算法·矩阵
醒过来摸鱼2 天前
空间直线方程
线性代数·概率论
测试人社区-小明2 天前
涂鸦板测试指南:从基础功能到用户体验的完整框架
人工智能·opencv·线性代数·微服务·矩阵·架构·ux
hweiyu002 天前
数据结构:矩阵
数据结构·线性代数·矩阵
拉姆哥的小屋2 天前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
咚咚王者2 天前
人工智能之数学基础 线性代数:第四章 矩阵分解
人工智能·线性代数·矩阵