矩阵迹(Trace)的性质及简单推导

1. 基础定义

迹(Trace) 是一个矩阵的对角线元素之和。对于矩阵 A A A,其迹定义为:

Trace ( A ) = ∑ i A i i \text{Trace}(A) = \sum_{i} A_{ii} Trace(A)=i∑Aii

迹的一个重要性质是:

Trace ( A B ) = Trace ( B A ) \text{Trace}(A B) = \text{Trace}(B A) Trace(AB)=Trace(BA)

即两个矩阵相乘后的迹不依赖于它们的顺序。

2. 迹对矩阵的导数

考虑矩阵 X X X,我们推导一些常见的迹函数的导数公式。

2.1 对 Trace ( A X ) \text{Trace}(A X) Trace(AX) 求导

假设 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。我们计算 ∂ ∂ X Trace ( A X ) \frac{\partial}{\partial X} \text{Trace}(A X) ∂X∂Trace(AX):

Trace ( A X ) = ∑ i , j A i j X j i \text{Trace}(A X) = \sum_{i,j} A_{ij} X_{ji} Trace(AX)=i,j∑AijXji

对 X X X 求导:

∂ ∂ X k l Trace ( A X ) = A l k \frac{\partial}{\partial X_{kl}} \text{Trace}(A X) = A_{lk} ∂Xkl∂Trace(AX)=Alk

将其转换为矩阵形式:

∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

2.2 对 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX) 求导

考虑更复杂的形式 Trace ( X T A X ) \text{Trace}(X^T A X) Trace(XTAX),其中 A A A 是已知矩阵, X X X 是需要对其求导的矩阵。

展开迹:

Trace ( X T A X ) = ∑ i , j , k X k i A i j X k j \text{Trace}(X^T A X) = \sum_{i,j,k} X_{ki} A_{ij} X_{kj} Trace(XTAX)=i,j,k∑XkiAijXkj

对 X p q X_{pq} Xpq 求导:

∂ ∂ X p q ∑ i , j , k X k i A i j X k j = A q q X p q + X p q A q q T \frac{\partial}{\partial X_{pq}} \sum_{i,j,k} X_{ki} A_{ij} X_{kj} = A_{qq} X_{pq} + X_{pq} A_{qq}^T ∂Xpq∂i,j,k∑XkiAijXkj=AqqXpq+XpqAqqT

综合所有项后,得到:

∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

2.3 总结迹的导数性质

  1. ∂ ∂ X Trace ( A X ) = A T \frac{\partial}{\partial X} \text{Trace}(A X) = A^T ∂X∂Trace(AX)=AT

    • 迹函数可以通过矩阵元素的线性组合进行转换,导数为 A A A 的转置。
  2. ∂ ∂ X Trace ( X T A X ) = A X + X A T \frac{\partial}{\partial X} \text{Trace}(X^T A X) = A X + X A^T ∂X∂Trace(XTAX)=AX+XAT

    • 二次型矩阵的迹求导需要分别对矩阵 X X X 的左右项进行求导,并合并结果。

备注

个人水平有限,有问题随时交流~

相关推荐
独自破碎E10 小时前
BISHI45 小红的矩阵染色
线性代数·矩阵
TracyCoder1231 天前
LeetCode Hot100(46/100)——74. 搜索二维矩阵
算法·leetcode·矩阵
1 天前
2.12矩阵问题,发牌,数字金字塔
线性代数·算法·矩阵
passxgx1 天前
12.2 协方差矩阵与联合概率
线性代数·矩阵·概率论
Σίσυφος19001 天前
四元数 欧拉角 旋转矩阵
人工智能·算法·矩阵
赛博云推-Twitter热门霸屏工具1 天前
从手动运营到自动化矩阵:Twitter热门霸屏的技术化实现逻辑
矩阵·自动化·twitter
weixin_553132071 天前
探索Vortex开源GPGPU:RISC-V SIMT架构(4-2),TCU 矩阵计算(1)
矩阵·架构·github·risc-v·wmma·simt·tcu
AI科技星1 天前
张祥前统一场论 22 个核心公式及常数
服务器·人工智能·线性代数·算法·矩阵·概率论
维度攻城狮1 天前
Python控制系统仿真案例-RLC电路系统
python·线性代数·矩阵
㓗冽1 天前
矩阵问题(二维数组)-基础题70th + 发牌(二维数组)-基础题71th + 数字金字塔(二维数组)-基础题72th
c++·算法·矩阵