OpenCV视觉分析之目标跟踪(2)卡尔曼滤波器KalmanFilter的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

卡尔曼滤波器类。

该类实现了标准的卡尔曼滤波器(http://en.wikipedia.org/wiki/Kalman_filter,[\[292\]](https://docs.opencv.org/4.9.0/d0/de3/citelist.html#CITEREF_Welch95))。然而,你可以修改 transitionMatrix、controlMatrix 和 measurementMatrix 以获得扩展卡尔曼滤波器的功能。

注意

在 C API 中,当不再需要 CvKalman* kalmanFilter 结构时,应使用 cvReleaseKalman(&kalmanFilter) 释放它。

成员变量

cv::KalmanFilter 类包含以下几个主要成员变量:

  • StatePre (cv::Mat):状态向量的先验估计。
  • StatePost (cv::Mat):状态向量的后验估计。
  • TransitionMatrix (cv::Mat):状态转移矩阵F
  • ControlMatrix (cv::Mat):控制矩阵B
  • MeasurementMatrix (cv::Mat):测量矩阵H
  • ProcessNoiseCov (cv::Mat):过程噪声协方差矩阵Q
  • MeasurementNoiseCov (cv::Mat):测量噪声协方差矩阵R
  • ErrorCovPre (cv::Mat):状态误差协方差矩阵的先验估计。
  • ErrorCovPost (cv::Mat):状态误差协方差矩阵的后验估计。
    常用成员函数
  • cv::KalmanFilter::predict():执行卡尔曼滤波器的预测步骤。
  • cv::KalmanFilter::correct(const cv::Mat& measurement):执行卡尔曼滤波器的更新(校正)步骤。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

int main()
{
    // 创建卡尔曼滤波器对象
    cv::KalmanFilter kalman( 4, 2, 0 );  // 4维状态空间,2维测量空间,无控制输入

    // 设置状态转移矩阵 F
    kalman.transitionMatrix = ( cv::Mat_< float >( 4, 4 ) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1 );

    // 设置测量矩阵 H
    kalman.measurementMatrix = ( cv::Mat_< float >( 2, 4 ) << 1, 0, 0, 0, 0, 1, 0, 0 );

    // 设置过程噪声协方差矩阵 Q
    kalman.processNoiseCov = cv::Mat::eye( 4, 4, CV_32F ) * 0.001;

    // 设置测量噪声协方差矩阵 R
    kalman.measurementNoiseCov = cv::Mat::eye( 2, 2, CV_32F ) * 1;

    // 设置初始状态误差协方差矩阵 P
    kalman.errorCovPost = cv::Mat::eye( 4, 4, CV_32F );

    // 设置初始状态向量 X
    cv::Mat state    = ( cv::Mat_< float >( 4, 1 ) << 0, 0, 0, 0 );
    kalman.statePost = state.clone();
    kalman.statePre  = state.clone();

    // 模拟数据
    for ( int i = 0; i < 10; ++i )
    {
        // 预测步骤
        kalman.predict();

        // 假设测量数据
        cv::Mat measurement = ( cv::Mat_< float >( 2, 1 ) << i, i );

        // 更新步骤
        kalman.correct( measurement );

        // 输出预测和更新后的状态
        std::cout << "State Post: " << kalman.statePost.t() << std::endl;
    }

    return 0;
}

运行结果

bash 复制代码
State Post: [0, 0, 0, 0]
State Post: [0.66688877, 0.66688877, 0.33344439, 0.33344439]
State Post: [1.6255617, 1.6255617, 0.58373547, 0.58373547]
State Post: [2.655591, 2.655591, 0.72804737, 0.72804737]
State Post: [3.6954153, 3.6954153, 0.81201375, 0.81201375]
State Post: [4.7317009, 4.7317009, 0.86375207, 0.86375207]
State Post: [5.7625532, 5.7625532, 0.89756244, 0.89756244]
State Post: [6.7885842, 6.7885842, 0.92082435, 0.92082435]
State Post: [7.8107862, 7.8107862, 0.93754393, 0.93754393]
State Post: [8.8300419, 8.8300419, 0.95001465, 0.95001465]
相关推荐
初次攀爬者1 分钟前
RAG知识库核心优化|基于语义的智能文本切片方案(对比字符串长度分割)
人工智能·后端
宋情写4 分钟前
JavaAI05-Chain、MCP
java·人工智能
whaosoft-1435 分钟前
51c~目标检测~合集3
人工智能
掘金一周6 分钟前
高德地图与Three.js结合实现3D大屏可视化 | 掘金一周 1.8
前端·人工智能·后端
北京耐用通信9 分钟前
耐达讯自动化CAN转PROFIBUS网关让软启动器如何让包装线告别“信号迷宫”
人工智能·物联网·网络协议·自动化·信息与通信
ZhuNian的学习乐园14 分钟前
LLM知识检索增强:RAG_系统化解析与工程实践
人工智能·算法
paopao_wu18 分钟前
LangChainV1.0[05]-记忆管理
人工智能·python·langchain·ai编程
汤姆yu24 分钟前
基于深度学习的暴力行为识别系统
人工智能·深度学习
技术宅学长24 分钟前
关于CLS与mean_pooling的一些笔记
人工智能·pytorch·笔记·pycharm
七夜zippoe24 分钟前
如何利用AI Coding提效?从工具到思维的全面升级
人工智能·知识库·ai coding·知识驱动·提效