OpenCV视觉分析之目标跟踪(2)卡尔曼滤波器KalmanFilter的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

卡尔曼滤波器类。

该类实现了标准的卡尔曼滤波器(http://en.wikipedia.org/wiki/Kalman_filter,[\[292\]](https://docs.opencv.org/4.9.0/d0/de3/citelist.html#CITEREF_Welch95))。然而,你可以修改 transitionMatrix、controlMatrix 和 measurementMatrix 以获得扩展卡尔曼滤波器的功能。

注意

在 C API 中,当不再需要 CvKalman* kalmanFilter 结构时,应使用 cvReleaseKalman(&kalmanFilter) 释放它。

成员变量

cv::KalmanFilter 类包含以下几个主要成员变量:

  • StatePre (cv::Mat):状态向量的先验估计。
  • StatePost (cv::Mat):状态向量的后验估计。
  • TransitionMatrix (cv::Mat):状态转移矩阵F
  • ControlMatrix (cv::Mat):控制矩阵B
  • MeasurementMatrix (cv::Mat):测量矩阵H
  • ProcessNoiseCov (cv::Mat):过程噪声协方差矩阵Q
  • MeasurementNoiseCov (cv::Mat):测量噪声协方差矩阵R
  • ErrorCovPre (cv::Mat):状态误差协方差矩阵的先验估计。
  • ErrorCovPost (cv::Mat):状态误差协方差矩阵的后验估计。
    常用成员函数
  • cv::KalmanFilter::predict():执行卡尔曼滤波器的预测步骤。
  • cv::KalmanFilter::correct(const cv::Mat& measurement):执行卡尔曼滤波器的更新(校正)步骤。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

int main()
{
    // 创建卡尔曼滤波器对象
    cv::KalmanFilter kalman( 4, 2, 0 );  // 4维状态空间,2维测量空间,无控制输入

    // 设置状态转移矩阵 F
    kalman.transitionMatrix = ( cv::Mat_< float >( 4, 4 ) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1 );

    // 设置测量矩阵 H
    kalman.measurementMatrix = ( cv::Mat_< float >( 2, 4 ) << 1, 0, 0, 0, 0, 1, 0, 0 );

    // 设置过程噪声协方差矩阵 Q
    kalman.processNoiseCov = cv::Mat::eye( 4, 4, CV_32F ) * 0.001;

    // 设置测量噪声协方差矩阵 R
    kalman.measurementNoiseCov = cv::Mat::eye( 2, 2, CV_32F ) * 1;

    // 设置初始状态误差协方差矩阵 P
    kalman.errorCovPost = cv::Mat::eye( 4, 4, CV_32F );

    // 设置初始状态向量 X
    cv::Mat state    = ( cv::Mat_< float >( 4, 1 ) << 0, 0, 0, 0 );
    kalman.statePost = state.clone();
    kalman.statePre  = state.clone();

    // 模拟数据
    for ( int i = 0; i < 10; ++i )
    {
        // 预测步骤
        kalman.predict();

        // 假设测量数据
        cv::Mat measurement = ( cv::Mat_< float >( 2, 1 ) << i, i );

        // 更新步骤
        kalman.correct( measurement );

        // 输出预测和更新后的状态
        std::cout << "State Post: " << kalman.statePost.t() << std::endl;
    }

    return 0;
}

运行结果

bash 复制代码
State Post: [0, 0, 0, 0]
State Post: [0.66688877, 0.66688877, 0.33344439, 0.33344439]
State Post: [1.6255617, 1.6255617, 0.58373547, 0.58373547]
State Post: [2.655591, 2.655591, 0.72804737, 0.72804737]
State Post: [3.6954153, 3.6954153, 0.81201375, 0.81201375]
State Post: [4.7317009, 4.7317009, 0.86375207, 0.86375207]
State Post: [5.7625532, 5.7625532, 0.89756244, 0.89756244]
State Post: [6.7885842, 6.7885842, 0.92082435, 0.92082435]
State Post: [7.8107862, 7.8107862, 0.93754393, 0.93754393]
State Post: [8.8300419, 8.8300419, 0.95001465, 0.95001465]
相关推荐
JoannaJuanCV13 小时前
自动驾驶—CARLA仿真(3) 坐标和坐标变换
人工智能·机器学习·自动驾驶
TMO Group 探谋网络科技13 小时前
AI电商的应用:Magento 使用 Adobe 生成式 AI改造7大业务场景
大数据·人工智能·adobe·ai
UI设计兰亭妙微13 小时前
理性数据,温柔体验:北京兰亭妙微解码 Hydra Corps. 企业管理界面的 “松弛感设计”
大数据·人工智能·用户体验设计
慎独41313 小时前
家家有:从单向支出到价值循环,绿色积分如何 重构商业逻辑?
大数据·人工智能
Mxsoft61913 小时前
DBSCAN孤立点检测救场!某次异常数据污染,精准过滤保模型精度!
人工智能
华东设计之美13 小时前
muti-Agent+RAG+KnowledgeGraph构建智能问诊系统的可行性分析
人工智能·软件开发·rag·大模型应用·增强检索生成
光羽隹衡13 小时前
sklearn实现一元线性回归——分析广告投入和销售额的关系
人工智能·线性回归·sklearn
Luhui Dev13 小时前
幻觉不是 AI 的病,而是智能的宿命
人工智能
HyperAI超神经13 小时前
活动回顾丨 北大/清华/Zilliz/MoonBit共话开源,覆盖视频生成/视觉理解/向量数据库/AI原生编程语言
人工智能·ai·开源·编程语言·向量数据库·视频生成·视觉理解
智元视界13 小时前
AI情绪识别技术:发展、挑战与未来
人工智能·科技·数字化转型·产业升级