OpenCV视觉分析之目标跟踪(2)卡尔曼滤波器KalmanFilter的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

卡尔曼滤波器类。

该类实现了标准的卡尔曼滤波器(http://en.wikipedia.org/wiki/Kalman_filter,[\[292\]](https://docs.opencv.org/4.9.0/d0/de3/citelist.html#CITEREF_Welch95))。然而,你可以修改 transitionMatrix、controlMatrix 和 measurementMatrix 以获得扩展卡尔曼滤波器的功能。

注意

在 C API 中,当不再需要 CvKalman* kalmanFilter 结构时,应使用 cvReleaseKalman(&kalmanFilter) 释放它。

成员变量

cv::KalmanFilter 类包含以下几个主要成员变量:

  • StatePre (cv::Mat):状态向量的先验估计。
  • StatePost (cv::Mat):状态向量的后验估计。
  • TransitionMatrix (cv::Mat):状态转移矩阵F
  • ControlMatrix (cv::Mat):控制矩阵B
  • MeasurementMatrix (cv::Mat):测量矩阵H
  • ProcessNoiseCov (cv::Mat):过程噪声协方差矩阵Q
  • MeasurementNoiseCov (cv::Mat):测量噪声协方差矩阵R
  • ErrorCovPre (cv::Mat):状态误差协方差矩阵的先验估计。
  • ErrorCovPost (cv::Mat):状态误差协方差矩阵的后验估计。
    常用成员函数
  • cv::KalmanFilter::predict():执行卡尔曼滤波器的预测步骤。
  • cv::KalmanFilter::correct(const cv::Mat& measurement):执行卡尔曼滤波器的更新(校正)步骤。

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

int main()
{
    // 创建卡尔曼滤波器对象
    cv::KalmanFilter kalman( 4, 2, 0 );  // 4维状态空间,2维测量空间,无控制输入

    // 设置状态转移矩阵 F
    kalman.transitionMatrix = ( cv::Mat_< float >( 4, 4 ) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1 );

    // 设置测量矩阵 H
    kalman.measurementMatrix = ( cv::Mat_< float >( 2, 4 ) << 1, 0, 0, 0, 0, 1, 0, 0 );

    // 设置过程噪声协方差矩阵 Q
    kalman.processNoiseCov = cv::Mat::eye( 4, 4, CV_32F ) * 0.001;

    // 设置测量噪声协方差矩阵 R
    kalman.measurementNoiseCov = cv::Mat::eye( 2, 2, CV_32F ) * 1;

    // 设置初始状态误差协方差矩阵 P
    kalman.errorCovPost = cv::Mat::eye( 4, 4, CV_32F );

    // 设置初始状态向量 X
    cv::Mat state    = ( cv::Mat_< float >( 4, 1 ) << 0, 0, 0, 0 );
    kalman.statePost = state.clone();
    kalman.statePre  = state.clone();

    // 模拟数据
    for ( int i = 0; i < 10; ++i )
    {
        // 预测步骤
        kalman.predict();

        // 假设测量数据
        cv::Mat measurement = ( cv::Mat_< float >( 2, 1 ) << i, i );

        // 更新步骤
        kalman.correct( measurement );

        // 输出预测和更新后的状态
        std::cout << "State Post: " << kalman.statePost.t() << std::endl;
    }

    return 0;
}

运行结果

bash 复制代码
State Post: [0, 0, 0, 0]
State Post: [0.66688877, 0.66688877, 0.33344439, 0.33344439]
State Post: [1.6255617, 1.6255617, 0.58373547, 0.58373547]
State Post: [2.655591, 2.655591, 0.72804737, 0.72804737]
State Post: [3.6954153, 3.6954153, 0.81201375, 0.81201375]
State Post: [4.7317009, 4.7317009, 0.86375207, 0.86375207]
State Post: [5.7625532, 5.7625532, 0.89756244, 0.89756244]
State Post: [6.7885842, 6.7885842, 0.92082435, 0.92082435]
State Post: [7.8107862, 7.8107862, 0.93754393, 0.93754393]
State Post: [8.8300419, 8.8300419, 0.95001465, 0.95001465]
相关推荐
链上日记1 小时前
WEEX出席迪拜区块链生活2025,担任白金赞助商
人工智能·区块链·生活
灵途科技3 小时前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
IT90904 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
Small___ming5 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
渔舟渡简5 小时前
机器学习-回归分析概述
人工智能·机器学习
王哈哈^_^5 小时前
【数据集】【YOLO】目标检测游泳数据集 4481 张,溺水数据集,YOLO河道、海滩游泳识别算法实战训练教程。
人工智能·算法·yolo·目标检测·计算机视觉·分类·视觉检测
桂花饼5 小时前
Sora 2:从视频生成到世界模拟,OpenAI的“终极游戏”
人工智能·aigc·openai·sora 2
wwlsm_zql6 小时前
荣耀YOYO智能体:自动执行与任务规划,开启智能生活新篇章
人工智能·生活
科学计算技术爱好者6 小时前
未来已来:AI 如何在 3 年内重塑工作、教育与生活
人工智能·ai