【果蔬识别】Python+卷积神经网络算法+深度学习+人工智能+机器学习+TensorFlow+计算机课设项目+算法模型

一、介绍

果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。

二、系统效果图片展示

三、演示视频 and 完整代码 and 远程安装

地址:https://www.yuque.com/ziwu/yygu3z/pnrng41h0sg5f5tf

四、卷积神经网络算法介绍

卷积神经网络(CNN)是一种深度学习模型,特别适用于处理图像数据。其主要特点包括:

  1. 局部连接:CNN通过局部感受野的方式提取特征,每个卷积层只关注输入数据的一部分,从而减少计算复杂度。
  2. 权重共享:在同一卷积层中,使用相同的卷积核(滤波器)对不同区域进行卷积操作,这不仅减少了模型参数数量,还提高了模型的泛化能力。
  3. 层次化特征提取:CNN通过多个卷积层逐层提取特征,从简单的边缘和纹理到复杂的形状和物体,使得模型能够有效捕捉到数据的层次特征。
  4. 池化层:池化操作(如最大池化或平均池化)用于降低特征图的维度,减少计算量,同时保留重要特征。这有助于减轻过拟合并提高模型的稳定性。

以下是一个简单的CNN案例代码,展示如何使用Keras构建卷积神经网络:

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models

# 构建卷积神经网络
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(10, activation='softmax')  # 假设有10个类别
])

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 输出模型结构
model.summary()

以上代码展示了一个简单的三层卷积网络,用于图像分类任务。通过这种结构,CNN能够有效提取和识别图像中的特征。

相关推荐
小白学大数据35 分钟前
增量爬取策略:如何持续监控贝壳网最新成交数据
爬虫·python·性能优化
极客学术工坊35 分钟前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10222 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云2 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC4 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
@forever@5 小时前
【JAVA】LinkedList与链表
java·python·链表
程序员爱钓鱼6 小时前
Python编程实战:面向对象与进阶语法——类型注解与代码规范(PEP 8)
后端·python·ipython
程序员爱钓鱼6 小时前
Python实战:用高德地图API批量获取地址所属街道并写回Excel
后端·python·ipython
reasonsummer7 小时前
【教学类-97-06】20251105“葡萄”橡皮泥黏贴(小班主题《苹果与橘子》)
python
chenzhiyuan20187 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算