OpenCV视觉分析之目标跟踪(3)实现基于金字塔的 Lucas-Kanade 算法来进行稀疏光流计算的类SparsePyrLKOpticalFlow的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

用于计算稀疏光流的类。

该类可以使用带有金字塔的迭代 Lucas-Kanade 方法来计算稀疏特征集的光流

cv::SparsePyrLKOpticalFlow 类是 OpenCV 库中的一个类,用于实现基于金字塔的 Lucas-Kanade 算法来进行稀疏光流计算。这个类特别适合用来跟踪图像序列中的特征点,比如在视频中跟踪物体的关键点。

主要特点

  • 稀疏光流:只计算选定特征点的运动。
  • 金字塔结构:通过多尺度金字塔来提高跟踪的鲁棒性和准确性。
  • Lucas-Kanade 算法:使用 Lucas-Kanade 方法来计算特征点的位移。

成员函数

  • 构造函数:创建 cv::SparsePyrLKOpticalFlow 对象。
  • setMaxLevel(int maxLevel):设置金字塔的最大层数。
  • setWinSize(cv::Size winSize):设置用于计算光流的窗口大小。
  • calc(const cv::Mat &prevImg, const cv::Mat &nextImg, const cv::InputArray &prevPts, cv::OutputArray &nextPts, cv::OutputArray &status, cv::OutputArray &err):计算光流并返回新的特征点位置以及状态和误差。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载两个图像帧
    cv::Mat prevImg = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    cv::Mat nextImg = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );

    if ( !prevImg.data || !nextImg.data )
    {
        std::cout << "Error loading images" << std::endl;
        return -1;
    }

    // 检测特征点
    std::vector< cv::Point2f > prevPts;
    std::vector< cv::Point2f > nextPts;
    std::vector< uchar > status;
    std::vector< float > err;

    // 检测特征点(例如使用 Shi-Tomasi 角点检测)
    std::vector< cv::Point2f > corners;
    cv::goodFeaturesToTrack( prevImg, corners, 100, 0.01, 10, cv::Mat() );

    // 创建 SparsePyrLKOpticalFlow 对象
    cv::Ptr< cv::SparsePyrLKOpticalFlow > lk = cv::SparsePyrLKOpticalFlow::create();

    // 设置参数
    lk->setMaxLevel( 2 );
    lk->setWinSize( cv::Size( 15, 15 ) );

    // 计算光流
    lk->calc( prevImg, nextImg, corners, nextPts, status, err );

    // 可视化结果
    cv::Mat outImg = cv::Mat::zeros( prevImg.size(), CV_8UC3 );
    for ( size_t i = 0; i < corners.size(); i++ )
    {
        if ( status[ i ] )
        {
            cv::circle( outImg, corners[ i ], 5, cv::Scalar( 0, 255, 0 ), -1 );
            cv::line( outImg, corners[ i ], nextPts[ i ], cv::Scalar( 0, 0, 255 ), 2 );
        }
    }

    // 显示结果
    cv::imshow( "Sparse Optical Flow", outImg );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
那个村的李富贵10 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿10 小时前
Scaled Dot-Product Attention 分数计算 C++
算法
琹箐11 小时前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia111 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了11 小时前
数据结构之树(Java实现)
java·算法
算法备案代理12 小时前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.12 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦13 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总13 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow688913 小时前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法