使用DJL和PaddlePaddle的口罩检测详细指南

使用DJL和PaddlePaddle的口罩检测详细指南

完整代码

该项目利用DJL和PaddlePaddle的预训练模型,构建了一个口罩检测应用程序。该应用能够在图片中检测人脸,并将每张人脸分类为"戴口罩"或"未戴口罩"。我们将深入分析代码的每个部分,以便清晰了解每一步。

代码关键组件

  1. 缩放比例和置信度阈值配置

    • scale:控制图像缩放比例;值越小检测速度越快,但精度会降低。可根据应用场景的精度要求调整。
    • threshold:设定检测结果的最低置信度,用于过滤低置信度的检测结果。
  2. 人脸和口罩检测模型的初始化

    • 初始化FaceDetection用于定位人脸区域,FaceMaskDetect则用于对检测出的人脸区域进行口罩状态的分类。
  3. 模型加载和预测

    • 使用DJL的ZooModel类加载人脸检测和口罩分类模型。人脸检测模型识别图像中的人脸区域,分类模型判断每张人脸是否佩戴口罩。
    • 遍历资源目录中的所有图像文件,分别进行检测和分类,并将结果保存和记录。

优化后的代码讲解

以下是代码的改进版本,加入了详细的注释来说明每一步的操作:

java 复制代码
@SneakyThrows
@Test
public void test1() {
    // 设置人脸检测的缩放比例和置信度阈值
    float scale = 0.5f;  // 缩小图像尺寸,提升检测速度
    float threshold = 0.7f;  // 仅保留置信度大于0.7的检测结果

    // 初始化人脸检测和口罩检测模型
    FaceDetection faceDetection = new FaceDetection();
    FaceMaskDetect faceMaskDetect = new FaceMaskDetect();

    try (
            // 加载人脸检测模型
            ZooModel<Image, DetectedObjects> model = ModelZoo.loadModel(faceDetection.criteria(scale, threshold));
            Predictor<Image, DetectedObjects> faceDetector = model.newPredictor();

            // 加载口罩分类模型
            ZooModel<Image, Classifications> classifyModel = ModelZoo.loadModel(faceMaskDetect.criteria());
            Predictor<Image, Classifications> classifier = classifyModel.newPredictor()) {

        // 遍历资源目录中的图像文件
        for (File file : new File("src/test/resources").listFiles()) {
            // 读取并处理图像
            BufferedImage img = ImageIO.read(file);
            Image image = ImageFactory.getInstance().fromImage(img);

            // 使用人脸检测和口罩分类器进行预测
            DetectedObjects detections = faceMaskDetect.predict(faceDetector, classifier, image);

            // 保存检测结果,绘制边框并记录到指定目录
            ImageUtils.saveBoundingBoxImage(image, detections, file.getName(), "build/output");
            
            // 日志输出检测结果
            logger.info("{}", detections);
        }
    }
}

各步骤详细解读

Step 1: 设置检测参数

scale参数控制图像缩放的比率。缩小图像的尺寸会提升检测速度,但可能会损失一些精度。该值可以根据需求灵活调整。

threshold参数设定了最小置信度,用于过滤低置信度的检测结果。例如,0.7的阈值意味着仅保留置信度在70%以上的结果。

Step 2: 初始化检测模型

这里分别初始化FaceDetection和FaceMaskDetect两个对象。FaceDetection对象用于人脸检测,即识别图像中的人脸位置。FaceMaskDetect对象则用于口罩检测,即对识别出的人脸区域进一步分类。

Step 3: 加载模型和初始化预测器

ModelZoo.loadModel(faceDetection.criteria(scale, threshold))通过criteria加载人脸检测模型,并将其转化为DJL的ZooModel对象。

Predictor<Image, DetectedObjects> faceDetector = model.newPredictor()创建一个Predictor,用于接收Image对象并返回人脸检测的DetectedObjects。

同样,口罩分类模型通过faceMaskDetect.criteria()加载,并使用Predictor<Image, Classifications>进行分类预测。

Step 4: 遍历图像文件

使用listFiles()方法遍历指定目录下的所有图像文件,以便逐个进行人脸检测和口罩分类。

Step 5: 执行人脸检测和口罩分类

faceMaskDetect.predict(faceDetector, classifier, image)方法同时使用人脸检测器faceDetector和分类器classifier,首先检测人脸位置,然后在检测到的人脸区域内进行口罩状态的分类。

Step 6: 保存检测结果

使用ImageUtils.saveBoundingBoxImage()方法,将检测结果绘制到图像上,并保存到build/output目录下。该方法会在图片上标注检测框及口罩状态,便于直观观察检测效果。

Step 7: 输出检测结果

使用日志记录检测结果,包含分类结果("MASK" 或 "NO MASK")、置信度、检测框的坐标和尺寸等信息。控制台示例输出如下:

运行效果示例

执行该代码后,在控制台中可以看到每张图片的检测结果,包括人脸位置和是否佩戴口罩的分类信息。以下是示例输出:

java 复制代码
[INFO ] - [
    class: "MASK", probability: 0.95524, bounds: [x=0.415, y=0.234, width=0.319, height=0.425]
]
[INFO ] - [
    class: "MASK", probability: 0.99275, bounds: [x=0.274, y=0.226, width=0.412, height=0.523]
]
[INFO ] - [
    class: "MASK", probability: 0.99931, bounds: [x=0.489, y=0.289, width=0.234, height=0.443]
]
[INFO ] - [
    class: "NO MASK", probability: 0.99916, bounds: [x=0.489, y=0.311, width=0.171, height=0.395]
]
[INFO ] - [
]
[INFO ] - [
    class: "MASK", probability: 0.99964, bounds: [x=0.190, y=0.187, width=0.309, height=0.538]
]

检测效果图示例

以下展示了原图和检测后的效果图:

原图 检测图

总结与优化建议

该系统能够精准地检测人脸并判断口罩佩戴状态,可应用于各类检测场景。可以根据实际需求,调整缩放比例scale和置信度阈值threshold以平衡速度和精度。
完整代码

相关推荐
codingPower4 小时前
Java EasyExcel创建复杂表格的完整指南:WriteTable
java·开发语言
愤怒的可乐4 小时前
从零构建大模型智能体:构建可调用工具的智能体
人工智能·大模型·智能体框架
xqlily4 小时前
PyTorch:深度学习研究的核心引擎(下)
人工智能·pytorch·深度学习
IT·小灰灰4 小时前
腾讯HY2.0 Think推理模型深度解析:技术突破、应用场景与实践指南
开发语言·人工智能·python·深度学习·神经网络·算法·数据分析
却道天凉_好个秋4 小时前
OpenCV(三十七):外接矩形
人工智能·opencv·计算机视觉
da_vinci_x4 小时前
PS 图案预览 + Sampler:告别“修接缝”,AI 量产 4K 无缝 PBR
人工智能·游戏·aigc·贴图·技术美术·游戏美术·法线贴图
m0_704887894 小时前
Day 27
人工智能·python·机器学习
木枷4 小时前
LLama-factory数据报错
人工智能·机器学习·llama
田里的水稻4 小时前
DL_端到端_基于卷积循环神经网络的(CRNN)车牌号识别
人工智能·rnn·深度学习
大模型真好玩4 小时前
LangChain1.0实战之多模态RAG系统(四)——Trae Solo搭建部署多模态RAG前端(附AI编程实践指南)
人工智能·langchain·trae