第T6周:Tensorflow实现好莱坞明星识别

目标

具体实现

(一)环境

语言环境 :Python 3.10
编 译 器: PyCharm
框 架:

(二)具体步骤
1.查询TF版本和设置使用GPU
from tensorflow import keras  
from tensorflow.keras import models, layers  
import os, PIL, pathlib  
import matplotlib.pyplot as plt  
import tensorflow as tf  
import numpy as np  
  
# 查询tensorflow版本  
print("Tensorflow Version:", tf.__version__)  
  
# 设置使用GPU  
gpus = tf.config.list_physical_devices("GPU")  
print(gpus)  
  
if gpus:  
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU  
    tf.config.experimental.set_memory_growth(gpu0, True)    # 设置GPU显存按需使用  
    tf.config.set_visible_devices([gpu0], "GPU")

Tensorflow Version: 2.10.0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2.导入数据

目录结构如下:

# 导入数据  
data_dir = './datasets/hollywood/'  
data_dir = pathlib.Path(data_dir)  
  
# 查看数据  
image_count = len(list(data_dir.glob('*/*.jpg')))  
print('图片总数为:', image_count)

图片总数为: 1800

# 看看Brad Pitt(布拉德·皮特)的图片  
brad_pitt = list(data_dir.glob('Brad Pitt/*.jpg'))  
im = PIL.Image.open(brad_pitt[0])  
im.show()
3.数据预处理
# 数据预处理  
batch_size = 32  
image_height = 224  
image_width = 224  
  
train_ds = tf.keras.preprocessing.image_dataset_from_directory(  
    directory=data_dir,  
    validation_split=0.1,  
    subset="training",  
    label_mode="categorical",  
    seed=123,  
    image_size=(image_height, image_width),  
    batch_size=batch_size  
)  
val_ds = tf.keras.preprocessing.image_dataset_from_directory(  
    directory=data_dir,  
    validation_split=0.1,  
    subset="validation",  
    label_mode="categorical",  
    seed=123,  
    image_size=(image_height, image_width),  
    batch_size=batch_size  
)

Found 1800 files belonging to 17 classes.
Using 1620 files for training.
Found 1800 files belonging to 17 classes.
Using 180 files for validation.

# 输出数据集的标签(标签按字母顺序对应于目录名称)  
class_names = train_ds.class_names  
print(class_names)

['Angelina Jolie', 'Brad Pitt', 'Denzel Washington', 'Hugh Jackman', 'Jennifer Lawrence', 'Johnny Depp', 'Kate Winslet', 'Leonardo DiCaprio', 'Megan Fox', 'Natalie Portman', 'Nicole Kidman', 'Robert Downey Jr', 'Sandra Bullock', 'Scarlett Johansson', 'Tom Cruise', 'Tom Hanks', 'Will Smith']

# 可视化数据  
plt.figure(figsize=(20, 10))  
for images, labels in train_ds.take(1):  
    for i in range(20):  
        ax = plt.subplot(5, 10, i + 1)  
        plt.imshow(images[i].numpy().astype("uint8"))  
        plt.title(class_names[np.argmax(labels[i])])  
  
        plt.axis("off")  
plt.show()
# 再次检查数据  
for image_batch, labels_batch in train_ds:  
    print(image_batch.shape)  
    print(labels_batch.shape)  
    break

(32, 224, 224, 3)
(32, 17)
4.配置数据集
# 配置数据集  
AUTOTUNE = tf.data.AUTOTUNE  
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)  
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
5.构建CNN网络
# 构建CNN网络  
model = models.Sequential([  
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(image_height, image_width, 3)),  
    layers.Conv2D(16, (3, 3), 1, activation='relu', input_shape=(image_height, image_width)),  
    layers.AveragePooling2D((2, 2)),  
    layers.Conv2D(32, (3, 3), activation='relu'),  
    layers.AveragePooling2D((2, 2)),  
    layers.Dropout(0.5),  
    layers.Conv2D(64, (3, 3), activation='relu'),  
    layers.AveragePooling2D((2, 2)),  
    layers.Dropout(0.5),  
    layers.Conv2D(128, (3, 3), activation='relu'),  
    layers.Dropout(0.5),  
  
    layers.Flatten(),  
    layers.Dense(128, activation='relu'),  
    layers.Dense(len(class_names))  
])  
print(model.summary())
6.训练模型
# 训练模型  
# 1. 设置动态学习率  
initial_learning_rate = 1e-4    # 设置初始学习率  
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(  # 对学习率使用指数衰减  
    initial_learning_rate=initial_learning_rate,  
    decay_steps=60,  # 学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。  
    decay_rate=0.96,  # 学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。  
    staircase=True  
)  
# 2. 将指数衰减学习率送入优化器  
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)  
  
# 3. 设置损失函数  
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)    # 多分类的对数损失函数  
  
model.compile(  
    optimizer=optimizer,  
    loss=loss,  
    metrics=['accuracy']  
)  
  
epochs = 100  
  
# 保存模型最佳参数  
checkpointer = ModelCheckpoint(  
    filepath='./models/hollywood-best.h5',  
    monitor='val_accuracy',  
    verbose=1,  
    save_best_only=True,  
    save_weights_only=True  
)  
  
# 设置早停  
earlystopper = EarlyStopping(  
    monitor='val_accuracy',  
    min_delta=0.001,  
    patience=20,  
    verbose=1  
)  
  
# 训练  
history = model.fit(  
    x=train_ds,  
    validation_data=val_ds,  
    epochs=epochs,  
    callbacks=[checkpointer, earlystopper]  
)  
  
# 模型评估  
  
acc = history.history['accuracy']  
val_acc = history.history['val_accuracy']  
  
loss = history.history['loss']  
val_loss = history.history['val_loss']  
  
epochs_range = range(len(loss))  
  
plt.figure(figsize=(12, 4))  
plt.subplot(1, 2, 1)  
plt.plot(epochs_range, acc, label="Training Accuracy")  
plt.plot(epochs_range, val_acc, label="Validation Accuracy")  
plt.legend(loc="lower right")  
plt.title("Training and validation accuracy")  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, loss, label="Loss Accuracy")  
plt.plot(epochs_range, val_loss, label="Validation Loss")  
plt.legend(loc="lower right")  
plt.title("Training and validation Loss")  
  
plt.show()
7.真实图片预测
# 加载效果最好的模型权重  
model.load_weights('./models/hollywood-best.h5')  
# img = PIL.Image.open("./datasets/hollywood/Jennifer Lawrence/021_2eaafb9f.jpg")  
# image = tf.image.resize(img, [image_height, image_width])  
  
image = tf.keras.utils.load_img('./datasets/hollywood/Jennifer Lawrence/021_2eaafb9f.jpg', target_size=(image_height, image_width))  
image_array = tf.keras.utils.img_to_array(image)  # 将PIL对象转换成numpy数组  
img_array = tf.expand_dims(image_array, 0)    # /255.0  # 记得做归一化处理(与训练集处理方式保持一致)  
  
predictions =model.predict(img_array)  
  
print("预测结果为:", class_names[np.argmax(predictions)])

预测结果为: Jennifer Lawrence
(三)总结

实际预测会发现结果有很大概率会出错的。其次看模型评估,其实训练的结果是比较差的, val_accuracy最好只有40%左右。如何提高准确率,还需要研究,后续出实践总结。

相关推荐
宋一诺3318 分钟前
机器学习—在一个单层中的前向传播
人工智能·机器学习
pen-ai19 分钟前
【机器学习】21. Transformer: 最通俗易懂讲解
人工智能·神经网络·机器学习·矩阵·数据挖掘
阿亨仔30 分钟前
Pytorch猴痘病识别
人工智能·pytorch·python·深度学习·算法·机器学习
布兰妮甜1 小时前
诺贝尔物理学奖的新篇章:机器学习与神经网络的光辉时刻
人工智能·神经网络·机器学习
思通数科大数据舆情2 小时前
OCR、语音识别与信息抽取:免费开源的AI平台在医疗领域的创新应用
人工智能·目标检测·机器学习·计算机视觉·数据挖掘·ocr·语音识别
宋一诺332 小时前
机器学习—前向传播的一般实现
人工智能·机器学习
B站计算机毕业设计超人3 小时前
计算机毕业设计Hadoop+大模型地震预测系统 地震数据分析可视化 地震爬虫 大数据毕业设计 Spark 机器学习 深度学习 Flink 大数据
大数据·hadoop·爬虫·深度学习·机器学习·数据分析·课程设计
武子康4 小时前
大数据-207 数据挖掘 机器学习理论 - 多重共线性 矩阵满秩 线性回归算法
大数据·人工智能·算法·决策树·机器学习·矩阵·数据挖掘
这个男人是小帅5 小时前
【GCN】 代码详解 (1) 如何运行【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
深度学习实战训练营6 小时前
HyperGAT模型复现微博文本情绪多分类
人工智能·分类·数据挖掘