R使用ggplot实现基础数据可视化

  1. 在开始之前,我们需要设置工作目录并导入数据集 liver.df 作为案例示范,如果需要liver.df可以评论。
R 复制代码
# set your own working directory!
setwd("liver_files_location")

liver.cells.df <- read.table("liver.cells.txt", header = FALSE)
liver.section.df <- read.table("liver.section.txt", header = FALSE)
liver.exper.df <- read.table("liver.exper.txt", header = FALSE) 
liver.gt.df <- read.table("liver.gt.txt", header = TRUE)
liver.df <- data.frame(liver.cells.df, liver.section.df, liver.exper.df, liver.gt.df)
colnames(liver.df) <- c("cells", "section", "exper", colnames(liver.gt.df))
  1. 安装ggplot包。
R 复制代码
install.packages("ggplot2")
library(ggplot2)

ggplot2 是由 Hadley Wickham 创建的 R 包。它提供了一个强大的图形工具,用于创建美观且复杂的图表。近年来,它在 R 社区中的受欢迎程度急剧上升。该包允许您以直接的方式创建图表,展示单变量和多变量的数值和分类数据。分组可以通过颜色、符号、大小和透明度来表示。

  1. 散点图绘制:
R 复制代码
ggplot(liver.df, aes(x = cells, y = PRL)) + geom_point(col = "red") +
  labs(title = "Cells vs PRL", x = "Number of Cells", y = "PRL Response")

选定x轴为cells,y轴为PRL,使用红颜色绘制散点,labs标签用于标题和x、y轴名称的显示。

  1. 密度图绘制:
R 复制代码
ggplot(liver.df, aes(x = PRL, colour = exper, fill = exper)) +
  geom_density(alpha = 0.5) + xlim(-20,40) + 
  labs(title = "Density of PRL", x = "PRL Response", y = "Density")

使用liver.df数据框,aes选定x轴且告诉r语言我们要分别对exper的变量填色,透明度用alpha=0。5调整,x的可视范围调为-20到40,再对标题等进行名称显示。

  1. 多张散点图绘制:
R 复制代码
ggplot(liver.df, aes(x = PRL, y = ARL, color = exper)) +
  geom_point() + facet_wrap(section ~ exper) + theme_minimal()

命令 facet_wrap(section ~ exper) 按照章节和实验分割散点图,theme_minimal() 将绘图风格改为极简主题(例如,它移除了灰色背景)。

  1. 回归线绘制:
R 复制代码
ggplot(liver.df, aes(x = cells, y = ARL, colour = exper)) + geom_point() +
      labs(title = "Regression of ARL on cells", 
      x = "Number of Injected Cells", y = "ARL Response") +
      geom_smooth(method = 'lm', formula = y ~ x)

我们为每个实验在细胞上绘制ARL的回归图,使用geom_smooth(method = 'lm'),color根据exper选择不同颜色。

  1. 箱形图:
R 复制代码
ggplot(liver.df, aes(y = PRL, x = exper, fill = exper)) +
      geom_boxplot()  +
      labs(y = "PRL Response", x = "Experiment")

使用 geom_boxplot()生成各实验的 PRL 方框图。

ggplot2数据可视化官方文档

  1. the ggplot reference site: Function reference • ggplot2

  2. this ggplot2 Tutorial (short version and part 1-3): How to make any plot in ggplot2? | ggplot2 Tutorial

相关推荐
陈天伟教授13 小时前
人工智能训练师认证教程(3)Pandas数据世界的军刀
人工智能·数据分析·pandas
databook15 小时前
掌握相关性分析:读懂数据间的“悄悄话”
python·数据挖掘·数据分析
广州明周科技15 小时前
Revit 200+新功能之“明周科技功能商店 AI推荐助手”
科技·ai·信息可视化·bim·revit二次开发·revit·deepseek
企业智能研究15 小时前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析
十六年开源服务商17 小时前
怎样做好WordPress网站数据分析与运维服务
运维·数据挖掘·数据分析
沃达德软件17 小时前
大数据治安防控中心
大数据·人工智能·信息可视化·数据挖掘·数据分析
FIT2CLOUD飞致云18 小时前
仪表板和数据大屏支持统一设置数值格式,DataEase开源BI工具v2.10.18 LTS版本发布
开源·数据可视化·dataease·bi·数据大屏
Elastic 中国社区官方博客19 小时前
在 Kibana 中可视化你的 Bosch Smart Home 数据
大数据·运维·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
anghost15019 小时前
基于 STM32 的湖泊水位报警系统设计
stm32·嵌入式硬件·数据挖掘
Lun3866buzha20 小时前
大型铸件表面缺陷检测与分类_YOLO11-C2BRA应用实践
人工智能·分类·数据挖掘