R使用ggplot实现基础数据可视化

  1. 在开始之前,我们需要设置工作目录并导入数据集 liver.df 作为案例示范,如果需要liver.df可以评论。
R 复制代码
# set your own working directory!
setwd("liver_files_location")

liver.cells.df <- read.table("liver.cells.txt", header = FALSE)
liver.section.df <- read.table("liver.section.txt", header = FALSE)
liver.exper.df <- read.table("liver.exper.txt", header = FALSE) 
liver.gt.df <- read.table("liver.gt.txt", header = TRUE)
liver.df <- data.frame(liver.cells.df, liver.section.df, liver.exper.df, liver.gt.df)
colnames(liver.df) <- c("cells", "section", "exper", colnames(liver.gt.df))
  1. 安装ggplot包。
R 复制代码
install.packages("ggplot2")
library(ggplot2)

ggplot2 是由 Hadley Wickham 创建的 R 包。它提供了一个强大的图形工具,用于创建美观且复杂的图表。近年来,它在 R 社区中的受欢迎程度急剧上升。该包允许您以直接的方式创建图表,展示单变量和多变量的数值和分类数据。分组可以通过颜色、符号、大小和透明度来表示。

  1. 散点图绘制:
R 复制代码
ggplot(liver.df, aes(x = cells, y = PRL)) + geom_point(col = "red") +
  labs(title = "Cells vs PRL", x = "Number of Cells", y = "PRL Response")

选定x轴为cells,y轴为PRL,使用红颜色绘制散点,labs标签用于标题和x、y轴名称的显示。

  1. 密度图绘制:
R 复制代码
ggplot(liver.df, aes(x = PRL, colour = exper, fill = exper)) +
  geom_density(alpha = 0.5) + xlim(-20,40) + 
  labs(title = "Density of PRL", x = "PRL Response", y = "Density")

使用liver.df数据框,aes选定x轴且告诉r语言我们要分别对exper的变量填色,透明度用alpha=0。5调整,x的可视范围调为-20到40,再对标题等进行名称显示。

  1. 多张散点图绘制:
R 复制代码
ggplot(liver.df, aes(x = PRL, y = ARL, color = exper)) +
  geom_point() + facet_wrap(section ~ exper) + theme_minimal()

命令 facet_wrap(section ~ exper) 按照章节和实验分割散点图,theme_minimal() 将绘图风格改为极简主题(例如,它移除了灰色背景)。

  1. 回归线绘制:
R 复制代码
ggplot(liver.df, aes(x = cells, y = ARL, colour = exper)) + geom_point() +
      labs(title = "Regression of ARL on cells", 
      x = "Number of Injected Cells", y = "ARL Response") +
      geom_smooth(method = 'lm', formula = y ~ x)

我们为每个实验在细胞上绘制ARL的回归图,使用geom_smooth(method = 'lm'),color根据exper选择不同颜色。

  1. 箱形图:
R 复制代码
ggplot(liver.df, aes(y = PRL, x = exper, fill = exper)) +
      geom_boxplot()  +
      labs(y = "PRL Response", x = "Experiment")

使用 geom_boxplot()生成各实验的 PRL 方框图。

ggplot2数据可视化官方文档

  1. the ggplot reference site: Function reference • ggplot2

  2. this ggplot2 Tutorial (short version and part 1-3): How to make any plot in ggplot2? | ggplot2 Tutorial

相关推荐
wxl7812273 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
小尤笔记4 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础
FreedomLeo14 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
浊酒南街4 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
穆友航6 小时前
PDF内容提取,MinerU使用
数据分析·pdf
EterNity_TiMe_7 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
麦田里的稻草人w8 小时前
【数据分析实战】(一)—— JOJO战力图
数据挖掘·数据分析
思通数科多模态大模型8 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
请你喝好果汁6418 小时前
ggplot2-scale_x_continuous()
信息可视化
封步宇AIGC9 小时前
量化交易系统开发-实时行情自动化交易-4.2.3.指数移动平均线实现
人工智能·python·机器学习·数据挖掘