【GL09】(算法)卡尔曼滤波

一、简介

卡尔曼滤波(Kalman Filter)是一种有效的递归滤波器(自回归滤波器),它能够从一系列的包含统计噪声的测量中估计动态系统的状态。卡尔曼滤波广泛应用于信号处理、控制理论、自动驾驶、金融等领域。

基本公式:假设系统状态方程和测量方程为:

二、卡尔曼滤波器

cpp 复制代码
//1. 结构体类型定义
typedef struct 
{
    float LastP;//上次估算协方差 初始化值为0.02
    float Now_P;//当前估算协方差 初始化值为0
    float out;//卡尔曼滤波器输出 初始化值为0
    float Kg;//卡尔曼增益 初始化值为0
    float Q;//过程噪声协方差 初始化值为0.001
    float R;//观测噪声协方差 初始化值为0.543
}KFP;//Kalman Filter parameter

//2. 以高度为例 定义卡尔曼结构体并初始化参数
KFP KFP_height={0.02,0,0,0,0.001,0.543};

/**
 *卡尔曼滤波器
 *@param KFP *kfp 卡尔曼结构体参数
 *   float input 需要滤波的参数的测量值(即传感器的采集值)
 *@return 滤波后的参数(最优值)
 */
 float kalmanFilter(KFP *kfp,float input)
 {
     //预测协方差方程:k时刻系统估算协方差 = k-1时刻的系统协方差 + 过程噪声协方差
     kfp->Now_P = kfp->LastP + kfp->Q;
     //卡尔曼增益方程:卡尔曼增益 = k时刻系统估算协方差 / (k时刻系统估算协方差 + 观测噪声协方差)
     kfp->Kg = kfp->Now_P / (kfp->NOw_P + kfp->R);
     //更新最优值方程:k时刻状态变量的最优值 = 状态变量的预测值 + 卡尔曼增益 * (测量值 - 状态变量的预测值)
     kfp->out = kfp->out + kfp->Kg * (input -kfp->out);//因为这一次的预测值就是上一次的输出值
     //更新协方差方程: 本次的系统协方差付给 kfp->LastP 威下一次运算准备。
     kfp->LastP = (1-kfp->Kg) * kfp->Now_P;
     return kfp->out;
 }

/**
 *调用卡尔曼滤波器 实践
 */
int height;
int kalman_height=0;
kalman_height = kalmanFilter(&KFP_height,(float)height);
相关推荐
SoraLuna7 分钟前
「Mac玩转仓颉内测版26」基础篇6 - 字符类型详解
开发语言·算法·macos·cangjie
雨中rain1 小时前
贪心算法(2)
算法·贪心算法
sjsjs113 小时前
【数据结构-表达式解析】【hard】力扣224. 基本计算器
数据结构·算法·leetcode
C++忠实粉丝3 小时前
计算机网络socket编程(6)_TCP实网络编程现 Command_server
网络·c++·网络协议·tcp/ip·计算机网络·算法
坊钰3 小时前
【Java 数据结构】时间和空间复杂度
java·开发语言·数据结构·学习·算法
武昌库里写JAVA3 小时前
一文读懂Redis6的--bigkeys选项源码以及redis-bigkey-online项目介绍
c语言·开发语言·数据结构·算法·二维数组
禊月初三3 小时前
LeetCode 4.寻找两个中序数组的中位数
c++·算法·leetcode
学习使我飞升3 小时前
spf算法、三类LSA、区间防环路机制/规则、虚连接
服务器·网络·算法·智能路由器
庞传奇3 小时前
【LC】560. 和为 K 的子数组
java·算法·leetcode
SoraLuna4 小时前
「Mac玩转仓颉内测版32」基础篇12 - Cangjie中的变量操作与类型管理
开发语言·算法·macos·cangjie