Scikit-learn和Keras简介

一,Scikit-learn是一个开源的机器学习库,用于Python编程语言。它建立在NumPy、SciPy和matplotlib这些科学计算库之上,提供了简单有效的数据挖掘和数据分析工具。Scikit-learn库包含了许多用于分类、回归、聚类和降维的算法,包括支持向量机、随机森林、梯度提升、k-means、PCA和DBSCAN等。

入门Scikit-learn:

  1. 安装Scikit-learn

    如果你还没有安装Scikit-learn,可以通过pip安装:

    复制代码
    pip install scikit-learn
  2. 学习基础知识

    • 了解Python编程基础。
    • 学习机器学习的基本概念,如监督学习、无监督学习、模型评估等。
  3. 阅读官方文档

    Scikit-learn的官方文档是一个很好的学习资源,它提供了详细的教程和API文档。

  4. 实践示例

    • 从简单的数据集开始,比如Iris数据集,进行分类任务。
    • 尝试不同的模型,比如逻辑回归、支持向量机等。
    • 学习如何使用train_test_split来分割数据集,使用cross_val_score进行交叉验证。
  5. 模型评估与选择

    • 学习不同的评估指标,如准确率、召回率、F1分数等。
    • 学习如何使用网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)来调参。

二,Keras 是一个高级神经网络库,它能够运行在 TensorFlow、Microsoft Cognitive Toolkit、Theano 或者 PlaidML 之上。它由纯 Python 编写而成,能够以 TensorFlow 作为后端。Keras 的设计哲学是让用户能够快速实验,它能够以最小的工作量实现新的想法,并且能够快速运行。

入门Keras:

  1. 理解基本概念

    • 神经网络:了解神经网络的基本概念,包括前向传播、反向传播和梯度下降。
    • 深度学习:熟悉深度学习的基本原理,包括不同类型的网络(如卷积神经网络CNN、循环神经网络RNN等)。
  2. 安装Keras

    • 可以通过pip安装Keras,例如使用命令pip install keras
  3. 学习Keras API

    • Keras 提供了丰富的API来构建模型,包括不同的层(如Dense、Conv2D等)、激活函数(如relu、sigmoid等)、优化器(如adam、sgd等)和损失函数。
  4. 实践项目

    • 通过实践来学习是最好的方式。可以从简单的项目开始,比如手写数字识别(MNIST数据集),然后逐渐过渡到更复杂的项目。
相关推荐
云和数据.ChenGuang几秒前
F5 Big-IP 和 LVS负载均衡.运维免费技术教程
运维·负载均衡·lvs·运维工程师·运维技术·数据库运维工程师·运维教程
facaixxx2024几秒前
雨云服务器动态计费的CPU电量费用价格说明,举例说明
运维·服务器
有为少年2 分钟前
带噪学习 | Ambient Diffusion (NeurIPS 2023) 上篇
人工智能·深度学习·神经网络·学习·机器学习·计算机视觉·生成模型
甲虫机3 分钟前
深度学习权重计算三步法则
人工智能·机器学习
VertGrow AI销冠4 分钟前
智能获客软件VertGrow AI销冠关于提升销售业绩的解决方案
人工智能
乾元4 分钟前
网络遥测(Telemetry/gNMI)的结构化建模与特征化体系—— 从“采集指标”到“可被 AI 推理的状态向量”
运维·服务器·网络·人工智能·网络协议·华为·ansible
一个写python的菜鸟5 分钟前
华为服务器安装Todesk
linux·运维·服务器
啃火龙果的兔子6 分钟前
Java 学习路线及学习周期
java·开发语言·学习
小毅&Nora6 分钟前
【后端】【工具】从 “Vibe PPT“ 到 “蕉幻“:一个原生 AI PPT 生成应用的深度解析
人工智能·powerpoint
ekprada7 分钟前
Day 42 深度学习可解释性:Grad-CAM 与 Hook 机制
人工智能·机器学习