Scikit-learn和Keras简介

一,Scikit-learn是一个开源的机器学习库,用于Python编程语言。它建立在NumPy、SciPy和matplotlib这些科学计算库之上,提供了简单有效的数据挖掘和数据分析工具。Scikit-learn库包含了许多用于分类、回归、聚类和降维的算法,包括支持向量机、随机森林、梯度提升、k-means、PCA和DBSCAN等。

入门Scikit-learn:

  1. 安装Scikit-learn

    如果你还没有安装Scikit-learn,可以通过pip安装:

    复制代码
    pip install scikit-learn
  2. 学习基础知识

    • 了解Python编程基础。
    • 学习机器学习的基本概念,如监督学习、无监督学习、模型评估等。
  3. 阅读官方文档

    Scikit-learn的官方文档是一个很好的学习资源,它提供了详细的教程和API文档。

  4. 实践示例

    • 从简单的数据集开始,比如Iris数据集,进行分类任务。
    • 尝试不同的模型,比如逻辑回归、支持向量机等。
    • 学习如何使用train_test_split来分割数据集,使用cross_val_score进行交叉验证。
  5. 模型评估与选择

    • 学习不同的评估指标,如准确率、召回率、F1分数等。
    • 学习如何使用网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)来调参。

二,Keras 是一个高级神经网络库,它能够运行在 TensorFlow、Microsoft Cognitive Toolkit、Theano 或者 PlaidML 之上。它由纯 Python 编写而成,能够以 TensorFlow 作为后端。Keras 的设计哲学是让用户能够快速实验,它能够以最小的工作量实现新的想法,并且能够快速运行。

入门Keras:

  1. 理解基本概念

    • 神经网络:了解神经网络的基本概念,包括前向传播、反向传播和梯度下降。
    • 深度学习:熟悉深度学习的基本原理,包括不同类型的网络(如卷积神经网络CNN、循环神经网络RNN等)。
  2. 安装Keras

    • 可以通过pip安装Keras,例如使用命令pip install keras
  3. 学习Keras API

    • Keras 提供了丰富的API来构建模型,包括不同的层(如Dense、Conv2D等)、激活函数(如relu、sigmoid等)、优化器(如adam、sgd等)和损失函数。
  4. 实践项目

    • 通过实践来学习是最好的方式。可以从简单的项目开始,比如手写数字识别(MNIST数据集),然后逐渐过渡到更复杂的项目。
相关推荐
我有火的意志8 分钟前
Liunx执行source /etc/profile 报错, -bash: HISTTIMEFORMAT: readonly variable
开发语言·bash·histtimeformat·readonly
Hello_Embed12 分钟前
STM32HAL 快速入门(二十四):I2C 编程(一)—— 从 OLED 显示初识 I2C 协议
c语言·stm32·单片机·嵌入式硬件·学习
理智的煎蛋14 分钟前
GPU 服务器压力测试核心工具全解析:gpu-burn、cpu-burn 与 CUDA Samples
运维·服务器·人工智能·压力测试·gpu算力
陈敬雷-充电了么-CEO兼CTO16 分钟前
视频理解新纪元!VideoChat双模架构突破视频对话瓶颈,开启多模态交互智能时代
人工智能·chatgpt·大模型·多模态·世界模型·kimi·deepseek
蒋星熠26 分钟前
中间件架构设计与实践:构建高性能分布式系统的核心基石
开发语言·数据库·分布式·python·中间件·性能优化·硬件工程
枫叶丹427 分钟前
【Qt开发】显示类控件(二)-> QLCDNumber
开发语言·qt
simodai31 分钟前
机器学习1.Anaconda安装+环境配置
人工智能·机器学习
凯尔萨厮34 分钟前
Java学习笔记四(继承)
java·笔记·学习
SEO_juper36 分钟前
SEO新手入门:什么是SEO及其作用
运维·服务器·搜索引擎·seo·数字营销·seo优化
IT_陈寒37 分钟前
JavaScript 2024:10个颠覆你认知的ES新特性实战解析
前端·人工智能·后端