在AdaBoost中每轮训练后,为什么错误分类的样本权重会增大e^2αt倍

在 AdaBoost 的每一轮迭代中,样本 i i i 的权重更新公式为:
w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t y i G t ( x i ) ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t y_i G_t(x_i))}{Z_t} wt+1,i=Ztwt,i⋅exp(−αtyiGt(xi))

其中:

  • w t , i w_{t,i} wt,i 是样本 i i i 在第 t t t 轮的权重。
  • α t \alpha_t αt 是该轮弱分类器的权重系数。
  • y i y_i yi 是样本 i i i 的真实标签。
  • G t ( x i ) G_t(x_i) Gt(xi) 是弱分类器 G t G_t Gt 对样本 i i i 的预测结果。
  • Z t Z_t Zt 是归一化因子,用于确保新一轮权重的总和为 1。

权重增大的推导

根据公式,我们分两种情况讨论:

  1. 当样本被正确分类时 ,即 G t ( x i ) = y i G_t(x_i) = y_i Gt(xi)=yi:

    • 在这种情况下, y i G t ( x i ) = 1 y_i G_t(x_i) = 1 yiGt(xi)=1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i=Ztwt,i⋅exp(−αt)
  2. 当样本被错误分类时 ,即 G t ( x i ) ≠ y i G_t(x_i) \neq y_i Gt(xi)=yi:

    • 在这种情况下, y i G t ( x i ) = − 1 y_i G_t(x_i) = -1 yiGt(xi)=−1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i=Ztwt,i⋅exp(αt)

相对增长倍数的计算

为了计算错误分类的样本权重相对于正确分类样本权重的增长倍数,我们可以比较错误分类的样本权重和正确分类的样本权重之比。

  • 错误分类的样本权重更新 : w t + 1 , i 错误 = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i}^{\text{错误}} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i错误=Ztwt,i⋅exp(αt)
  • 正确分类的样本权重更新 : w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i}^{\text{正确}} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i正确=Ztwt,i⋅exp(−αt)

计算它们的比值,即:

w t + 1 , i 错误 w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( α t ) Z t w t , i ⋅ exp ⁡ ( − α t ) Z t = exp ⁡ ( 2 α t ) \frac{w_{t+1,i}^{\text{错误}}}{w_{t+1,i}^{\text{正确}}} = \frac{\frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t}}{\frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t}} = \exp(2\alpha_t) wt+1,i正确wt+1,i错误=Ztwt,i⋅exp(−αt)Ztwt,i⋅exp(αt)=exp(2αt)

结论

因此,相对于正确分类的样本,错误分类的样本权重确实增大了 e 2 α t e^{2\alpha_t} e2αt 倍。这个比值反映了AdaBoost通过增加权重让后续的弱分类器更多关注错误分类样本的机制。

相关推荐
失散1313 分钟前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.82438 分钟前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_2869451942 分钟前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火2 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴3 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢4 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1434 小时前
51c自动驾驶~合集14
人工智能
C++、Java和Python的菜鸟4 小时前
第六章 统计初步
算法·机器学习·概率论
Jinkxs4 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化