在AdaBoost中每轮训练后,为什么错误分类的样本权重会增大e^2αt倍

在 AdaBoost 的每一轮迭代中,样本 i i i 的权重更新公式为:
w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t y i G t ( x i ) ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t y_i G_t(x_i))}{Z_t} wt+1,i=Ztwt,i⋅exp(−αtyiGt(xi))

其中:

  • w t , i w_{t,i} wt,i 是样本 i i i 在第 t t t 轮的权重。
  • α t \alpha_t αt 是该轮弱分类器的权重系数。
  • y i y_i yi 是样本 i i i 的真实标签。
  • G t ( x i ) G_t(x_i) Gt(xi) 是弱分类器 G t G_t Gt 对样本 i i i 的预测结果。
  • Z t Z_t Zt 是归一化因子,用于确保新一轮权重的总和为 1。

权重增大的推导

根据公式,我们分两种情况讨论:

  1. 当样本被正确分类时 ,即 G t ( x i ) = y i G_t(x_i) = y_i Gt(xi)=yi:

    • 在这种情况下, y i G t ( x i ) = 1 y_i G_t(x_i) = 1 yiGt(xi)=1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i=Ztwt,i⋅exp(−αt)
  2. 当样本被错误分类时 ,即 G t ( x i ) ≠ y i G_t(x_i) \neq y_i Gt(xi)=yi:

    • 在这种情况下, y i G t ( x i ) = − 1 y_i G_t(x_i) = -1 yiGt(xi)=−1,所以权重更新为:
      w t + 1 , i = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i=Ztwt,i⋅exp(αt)

相对增长倍数的计算

为了计算错误分类的样本权重相对于正确分类样本权重的增长倍数,我们可以比较错误分类的样本权重和正确分类的样本权重之比。

  • 错误分类的样本权重更新 : w t + 1 , i 错误 = w t , i ⋅ exp ⁡ ( α t ) Z t w_{t+1,i}^{\text{错误}} = \frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t} wt+1,i错误=Ztwt,i⋅exp(αt)
  • 正确分类的样本权重更新 : w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( − α t ) Z t w_{t+1,i}^{\text{正确}} = \frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t} wt+1,i正确=Ztwt,i⋅exp(−αt)

计算它们的比值,即:

w t + 1 , i 错误 w t + 1 , i 正确 = w t , i ⋅ exp ⁡ ( α t ) Z t w t , i ⋅ exp ⁡ ( − α t ) Z t = exp ⁡ ( 2 α t ) \frac{w_{t+1,i}^{\text{错误}}}{w_{t+1,i}^{\text{正确}}} = \frac{\frac{w_{t,i} \cdot \exp(\alpha_t)}{Z_t}}{\frac{w_{t,i} \cdot \exp(-\alpha_t)}{Z_t}} = \exp(2\alpha_t) wt+1,i正确wt+1,i错误=Ztwt,i⋅exp(−αt)Ztwt,i⋅exp(αt)=exp(2αt)

结论

因此,相对于正确分类的样本,错误分类的样本权重确实增大了 e 2 α t e^{2\alpha_t} e2αt 倍。这个比值反映了AdaBoost通过增加权重让后续的弱分类器更多关注错误分类样本的机制。

相关推荐
Chicheng_MA2 小时前
算能 CV184 智能相机整体方案介绍
人工智能·数码相机·算能
Element_南笙2 小时前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
倔强青铜三2 小时前
苦练Python第69天:subprocess模块从入门到上瘾,手把手教你驯服系统命令!
人工智能·python·面试
Antonio9153 小时前
【图像处理】rgb和srgb
图像处理·人工智能·数码相机
倔强青铜三3 小时前
苦练 Python 第 68 天:并发狂飙!concurrent 模块让你 CPU 原地起飞
人工智能·python·面试
星期天要睡觉3 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
2401_858869803 小时前
目标检测2
人工智能·目标检测·计算机视觉
ARM+FPGA+AI工业主板定制专家3 小时前
基于ZYNQ的目标检测算法硬件加速器优化设计
人工智能·目标检测·计算机视觉·fpga开发·自动驾驶
koo3643 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习