在AdaBoost中,分类错误的样本的权重会增大

在AdaBoost中,分类错误的样本的权重会增大,这是AdaBoost的核心机制之一。

具体原因与过程

在每一轮迭代中,AdaBoost会根据当前弱分类器的表现,调整每个样本的权重:

  1. 分类错误的样本:若某个样本被当前弱分类器错误分类,AdaBoost会增大该样本的权重,以便在下一轮训练中引起弱分类器的更多关注。
  2. 分类正确的样本:若某个样本被正确分类,AdaBoost会降低该样本的权重,因为它已经被正确分类,不需要弱分类器过多关注。

数学表达

在第 t t t 轮迭代中,样本 i i i 的权重更新公式为:
w t + 1 , i = w t , i ⋅ exp ⁡ ( − α t y i G t ( x i ) ) Z t w_{t+1,i} = \frac{w_{t,i} \cdot \exp(-\alpha_t y_i G_t(x_i))}{Z_t} wt+1,i=Ztwt,i⋅exp(−αtyiGt(xi))

其中:

  • G t ( x i ) G_t(x_i) Gt(xi) 是当前弱分类器的预测结果。
  • y i y_i yi 是样本的真实标签。
  • α t \alpha_t αt 是该轮弱分类器的权重,表示分类器的"强度"。

在此公式中:

  • 如果 G t ( x i ) ≠ y i G_t(x_i) \neq y_i Gt(xi)=yi(即分类错误),则 exp ⁡ ( − α t y i G t ( x i ) ) \exp(-\alpha_t y_i G_t(x_i)) exp(−αtyiGt(xi)) 会变成一个大于1的数,这会增大 w t + 1 , i w_{t+1,i} wt+1,i。
  • 如果 G t ( x i ) = y i G_t(x_i) = y_i Gt(xi)=yi(即分类正确),则 exp ⁡ ( − α t y i G t ( x i ) ) \exp(-\alpha_t y_i G_t(x_i)) exp(−αtyiGt(xi)) 会变成一个小于1的数,这会减小 w t + 1 , i w_{t+1,i} wt+1,i。

效果

通过这种权重调整机制,AdaBoost在每一轮迭代中都会让后续的弱分类器更关注被前一轮错分的样本,从而逐步提高整个分类器对这些"难分样本"的识别能力。这也是为什么AdaBoost能够提高整体分类精度的原因。

相关推荐
Sirius Wu42 分钟前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5441 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running1 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界2 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔3 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起3 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰3 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya3 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清3 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
老夫的码又出BUG了4 小时前
预测式AI与生成式AI
人工智能·科技·ai