论文 | Ignore Previous Prompt: Attack Techniques For Language Models

这篇论文探讨了针对大型语言模型(LLM)的"提示注入"攻击,并提出了一种名为 PROMPTINJECT 的框架来研究这类攻击。

论文的主要内容包括:
1. 提示注入攻击:

论文定义了"提示注入"的概念,即通过在用户输入中插入恶意文本,以误导 LLM 的行为。

论文提出了两种攻击方式:

目标劫持: 将 LLM 的目标从原本的任务改为打印特定的目标字符串,例如恶意指令。

提示泄露: 将 LLM 的目标从原本的任务改为打印部分或全部原始提示,从而窃取应用程序的核心信息。
2. PROMPTINJECT 框架:

论文提出了 PROMPTINJECT 框架,用于构建和评估各种攻击提示。

框架包含以下几个模块:

基础提示: 包含初始指令、n-shot 示例、标签和私有值等,用于模拟实际应用场景。

攻击提示: 包含恶意指令、恶意字符和私有值等,用于实施目标劫持或提示泄露攻击。

模型设置: 包含温度、top-p 采样、频率/存在惩罚、模型选择等,用于控制 LLM 的输出行为。

有效性评分方法: 用于评估攻击的有效性,例如匹配目标字符串或原始指令。
3. 实验结果:

论文使用 PROMPTINJECT 框架构建了多种攻击提示,并在 35 个基础提示上进行了实验。

实验结果表明,目标劫持和提示泄露攻击都是可行的,并且攻击成功率受到多种因素的影响,例如攻击指令、分隔符、温度、恶意字符串、停止序列等。

论文还发现,text-davinci-002 是最易受攻击的模型,而较弱的模型则相对安全。
4. 讨论:

论文讨论了提示注入攻击的风险和影响,并提出了几种可能的解决方案,例如内容审核模型和双参数模型。

论文强调,完全防止提示注入攻击可能很困难,但可以通过研究和发展更好的防御方法来降低风险。
5. 未来工作:

论文提出了未来研究方向,例如自动搜索更有效的恶意指令、测试更多模型、探索新的攻击方式、研究防御方法等。
论文的意义:

这篇论文首次系统地研究了针对 LLM 的提示注入攻击,并提出了一个有效的评估框架。

论文的结果表明,LLM 容易受到攻击,并且攻击的成功率受到多种因素的影响。

论文强调了研究 LLM 安全性的重要性,并提出了几种可能的解决方案。
一些额外的思考:

提示注入攻击的风险随着 LLM 的应用范围扩大而增加。

开发人员需要更加关注 LLM 的安全性,并采取相应的措施来防止攻击。

未来需要进一步研究 LLM 的安全性,并开发更有效的防御方法。

总而言之,这篇论文对 LLM 的安全性研究具有重要意义,并为开发更安全可靠的 LLM 应用提供了重要的参考。

相关推荐
寒季6661 分钟前
Flutter 智慧零售服务平台:跨端协同打造全渠道消费生态
大数据·人工智能
六行神算API-天璇3 分钟前
可信AI的落地挑战:谈医疗大模型的可解释性与人机协同设计
大数据·人工智能
IT_陈寒9 分钟前
Vue 3.4 性能优化揭秘:这5个Composition API技巧让我的应用提速40%
前端·人工智能·后端
Keep_Trying_Go12 分钟前
基于Transformer的目标统计方法(CounTR: Transformer-based Generalised Visual Counting)
人工智能·pytorch·python·深度学习·transformer·多模态·目标统计
小马爱打代码14 分钟前
Spring AI:RAG 增强检索介绍
java·人工智能·spring
yumgpkpm15 分钟前
接入Impala、Hive 的AI平台、开源大模型的国内厂商(星环、Doris、智谱AI、Qwen、DeepSeek、 腾讯混元、百川智能)
人工智能·hive·hadoop·zookeeper·spark·开源·hbase
视觉&物联智能15 分钟前
【杂谈】-音频深度伪造技术:识别与防范全攻略
人工智能·web安全·ai·aigc·音视频·agi
Mintopia16 分钟前
🤖 AI 时代,大模型与系统的可融合场景架构猜想
人工智能·前端框架·操作系统
jimmyleeee17 分钟前
人工智能基础知识笔记二十五:构建一个优化PDF简历的Agent
人工智能·笔记
阿正的梦工坊18 分钟前
τ-bench:重塑Agent评估的工具-代理-用户交互基准
人工智能·机器学习·大模型·llm