论文 | Ignore Previous Prompt: Attack Techniques For Language Models

这篇论文探讨了针对大型语言模型(LLM)的"提示注入"攻击,并提出了一种名为 PROMPTINJECT 的框架来研究这类攻击。

论文的主要内容包括:
1. 提示注入攻击:

论文定义了"提示注入"的概念,即通过在用户输入中插入恶意文本,以误导 LLM 的行为。

论文提出了两种攻击方式:

目标劫持: 将 LLM 的目标从原本的任务改为打印特定的目标字符串,例如恶意指令。

提示泄露: 将 LLM 的目标从原本的任务改为打印部分或全部原始提示,从而窃取应用程序的核心信息。
2. PROMPTINJECT 框架:

论文提出了 PROMPTINJECT 框架,用于构建和评估各种攻击提示。

框架包含以下几个模块:

基础提示: 包含初始指令、n-shot 示例、标签和私有值等,用于模拟实际应用场景。

攻击提示: 包含恶意指令、恶意字符和私有值等,用于实施目标劫持或提示泄露攻击。

模型设置: 包含温度、top-p 采样、频率/存在惩罚、模型选择等,用于控制 LLM 的输出行为。

有效性评分方法: 用于评估攻击的有效性,例如匹配目标字符串或原始指令。
3. 实验结果:

论文使用 PROMPTINJECT 框架构建了多种攻击提示,并在 35 个基础提示上进行了实验。

实验结果表明,目标劫持和提示泄露攻击都是可行的,并且攻击成功率受到多种因素的影响,例如攻击指令、分隔符、温度、恶意字符串、停止序列等。

论文还发现,text-davinci-002 是最易受攻击的模型,而较弱的模型则相对安全。
4. 讨论:

论文讨论了提示注入攻击的风险和影响,并提出了几种可能的解决方案,例如内容审核模型和双参数模型。

论文强调,完全防止提示注入攻击可能很困难,但可以通过研究和发展更好的防御方法来降低风险。
5. 未来工作:

论文提出了未来研究方向,例如自动搜索更有效的恶意指令、测试更多模型、探索新的攻击方式、研究防御方法等。
论文的意义:

这篇论文首次系统地研究了针对 LLM 的提示注入攻击,并提出了一个有效的评估框架。

论文的结果表明,LLM 容易受到攻击,并且攻击的成功率受到多种因素的影响。

论文强调了研究 LLM 安全性的重要性,并提出了几种可能的解决方案。
一些额外的思考:

提示注入攻击的风险随着 LLM 的应用范围扩大而增加。

开发人员需要更加关注 LLM 的安全性,并采取相应的措施来防止攻击。

未来需要进一步研究 LLM 的安全性,并开发更有效的防御方法。

总而言之,这篇论文对 LLM 的安全性研究具有重要意义,并为开发更安全可靠的 LLM 应用提供了重要的参考。

相关推荐
孔令飞7 分钟前
关于 LLMOPS 的一些粗浅思考
人工智能·云原生·go
Lecea_L13 分钟前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
2501_9071368216 分钟前
OfficeAI构建本地办公生态:WPS/Word双端联动,数据自由流转
人工智能·word·wps
飞哥数智坊21 分钟前
从零构建自己的MCP Server
人工智能
是Dream呀23 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
项目申报小狂人34 分钟前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python
suke1 小时前
一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析
人工智能·程序员
oil欧哟1 小时前
😎 MCP 从开发到发布全流程介绍,看完不踩坑!
人工智能·typescript·node.js
Code_流苏1 小时前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入