论文 | Ignore Previous Prompt: Attack Techniques For Language Models

这篇论文探讨了针对大型语言模型(LLM)的"提示注入"攻击,并提出了一种名为 PROMPTINJECT 的框架来研究这类攻击。

论文的主要内容包括:
1. 提示注入攻击:

论文定义了"提示注入"的概念,即通过在用户输入中插入恶意文本,以误导 LLM 的行为。

论文提出了两种攻击方式:

目标劫持: 将 LLM 的目标从原本的任务改为打印特定的目标字符串,例如恶意指令。

提示泄露: 将 LLM 的目标从原本的任务改为打印部分或全部原始提示,从而窃取应用程序的核心信息。
2. PROMPTINJECT 框架:

论文提出了 PROMPTINJECT 框架,用于构建和评估各种攻击提示。

框架包含以下几个模块:

基础提示: 包含初始指令、n-shot 示例、标签和私有值等,用于模拟实际应用场景。

攻击提示: 包含恶意指令、恶意字符和私有值等,用于实施目标劫持或提示泄露攻击。

模型设置: 包含温度、top-p 采样、频率/存在惩罚、模型选择等,用于控制 LLM 的输出行为。

有效性评分方法: 用于评估攻击的有效性,例如匹配目标字符串或原始指令。
3. 实验结果:

论文使用 PROMPTINJECT 框架构建了多种攻击提示,并在 35 个基础提示上进行了实验。

实验结果表明,目标劫持和提示泄露攻击都是可行的,并且攻击成功率受到多种因素的影响,例如攻击指令、分隔符、温度、恶意字符串、停止序列等。

论文还发现,text-davinci-002 是最易受攻击的模型,而较弱的模型则相对安全。
4. 讨论:

论文讨论了提示注入攻击的风险和影响,并提出了几种可能的解决方案,例如内容审核模型和双参数模型。

论文强调,完全防止提示注入攻击可能很困难,但可以通过研究和发展更好的防御方法来降低风险。
5. 未来工作:

论文提出了未来研究方向,例如自动搜索更有效的恶意指令、测试更多模型、探索新的攻击方式、研究防御方法等。
论文的意义:

这篇论文首次系统地研究了针对 LLM 的提示注入攻击,并提出了一个有效的评估框架。

论文的结果表明,LLM 容易受到攻击,并且攻击的成功率受到多种因素的影响。

论文强调了研究 LLM 安全性的重要性,并提出了几种可能的解决方案。
一些额外的思考:

提示注入攻击的风险随着 LLM 的应用范围扩大而增加。

开发人员需要更加关注 LLM 的安全性,并采取相应的措施来防止攻击。

未来需要进一步研究 LLM 的安全性,并开发更有效的防御方法。

总而言之,这篇论文对 LLM 的安全性研究具有重要意义,并为开发更安全可靠的 LLM 应用提供了重要的参考。

相关推荐
晓翔仔1 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案1 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信2 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博3 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件4 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车4 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经4 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
shishi5215 小时前
trae重装后,无法预览调试弹窗报错的解决方案
ide·计算机视觉·语言模型
梁下轻语的秋缘5 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt
FreeBuf_5 小时前
ChatGPT引用马斯克AI生成的Grokipedia是否陷入“内容陷阱“?
人工智能·chatgpt