【OpenSearch】机器学习(Machine Learning)神经搜索教程

早年就在Elasticsearch上看到过机器学习模块,局限于需要开通白金及以上订阅,没有尝试过该模块,OpenSearch在2.6还是哪个版本已经内置该插件。

文章参考:https://opensearch.org/docs/latest/search-plugins/neural-search-tutorial/#top

1. 查看插件列表

opensearch-ml就是机器学习插件。

GET /_cat/plugins

node-1 opensearch-alerting 2.17.1.0

node-1 opensearch-anomaly-detection 2.17.1.0

node-1 opensearch-asynchronous-search 2.17.1.0

node-1 opensearch-cross-cluster-replication 2.17.1.0

node-1 opensearch-custom-codecs 2.17.1.0

node-1 opensearch-flow-framework 2.17.1.0

node-1 opensearch-geospatial 2.17.1.0

node-1 opensearch-index-management 2.17.1.0

node-1 opensearch-job-scheduler 2.17.1.0

node-1 opensearch-knn 2.17.1.0
node-1 opensearch-ml 2.17.1.0

node-1 opensearch-neural-search 2.17.1.0

node-1 opensearch-notifications 2.17.1.0

node-1 opensearch-notifications-core 2.17.1.0

node-1 opensearch-observability 2.17.1.0

node-1 opensearch-performance-analyzer 2.17.1.0

node-1 opensearch-reports-scheduler 2.17.1.0

node-1 opensearch-security 2.17.1.0

node-1 opensearch-security-analytics 2.17.1.0

node-1 opensearch-skills 2.17.1.0

node-1 opensearch-sql 2.17.1.0

node-1 opensearch-system-templates 2.17.1.0

node-1 query-insights 2.17.1.0

步骤 1:建立 ML 语言模型

神经搜索需要语言模型来在摄取时和查询时从文本字段生成向量嵌入。

步骤 1(a):选择语言模型

在本教程中,您将使用Hugging Face 的DistilBERT模型。它是 OpenSearch 中可用的预训练句子转换器模型之一,在基准测试中显示出一些最佳结果(有关详细信息,请参阅此博客文章)。您需要模型的名称、版本和维度才能注册它。您可以通过选择与模型的 TorchScript 工件相对应的链接在预训练模型表中找到此信息config_url:

  • 模型名称为huggingface/sentence-transformers/msmarco-distilbert-base-tas-b。
  • 模型版本是1.0.1。
  • 该模型的维数为768。

记下模型的维数,因为在设置 k-NN 索引时需要它。

步骤 1(b):注册模型组

POST /_plugins/_ml/model_groups/_register
{
  "name": "NLP_model_group",
  "description": "A model group for NLP models"
}
  • 此处模型组id返回为21en15IBr7hYQeyMk7-W
    您将使用此 ID 将所选模型注册到模型组。

步骤 1©: 将模型注册到模型组

POST /_plugins/_ml/models/_register
{
  "name": "huggingface/sentence-transformers/msmarco-distilbert-base-tas-b",
  "version": "1.0.1",
  "model_group_id": "21en15IBr7hYQeyMk7-W",
  "model_format": "TORCH_SCRIPT"
}
  • 此处模型id返回为5Veo15IBr7hYQeyM5b_B

获取模型是否创建完成(任务状态将为COMPLETED)

GET /_plugins/_ml/tasks/5Veo15IBr7hYQeyM5b_B

这里需要注意,模型拉取可能会失败,所以我测试环境使用了离线注册

离线注册

1. 手动下载文件到一个文件服务器

搭建一个nginx,做文件服务器,把下载好的模型文件,放到路径下,通过http访问后,右键该文件,复制下载链接。

2.集群设置
  1. 配置集群可以设置离线注册

    PUT _cluster/settings
    {
    "persistent": {
    "plugins.ml_commons.allow_registering_model_via_url": true
    }
    }

  2. 允许机器学习运行在任意节点

    PUT _cluster/settings
    {
    "persistent": {
    "plugins.ml_commons.only_run_on_ml_node": false
    }
    }

  3. 禁用自动部署

    PUT _cluster/settings
    {
    "persistent": {
    "plugins.ml_commons.model_auto_deploy.enable": "false"
    }
    }

3. 离线注册
POST /_plugins/_ml/models/_register
{
	"name": "sentence-transformers/msmarco-distilbert-base-tas-b",
	"version": "1.0.1",
	"description": "This is a port of the DistilBert TAS-B Model to sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and is optimized for the task of semantic search.",
	"model_task_type": "TEXT_EMBEDDING",
	"model_format": "ONNX",
	"model_content_size_in_bytes": 266291330,
	"model_content_hash_value": "a3c916f24239fbe32c43be6b24043123d49cd2c41b312fc2b29f2fc65e3c424c",
	"model_config": {
		"model_type": "distilbert",
		"embedding_dimension": 768,
		"framework_type": "huggingface_transformers",
		"pooling_mode": "CLS",
		"normalize_result": false,
		"all_config": "{\"_name_or_path\":\"old_models/msmarco-distilbert-base-tas-b/0_Transformer\",\"activation\":\"gelu\",\"architectures\":[\"DistilBertModel\"],\"attention_dropout\":0.1,\"dim\":768,\"dropout\":0.1,\"hidden_dim\":3072,\"initializer_range\":0.02,\"max_position_embeddings\":512,\"model_type\":\"distilbert\",\"n_heads\":12,\"n_layers\":6,\"pad_token_id\":0,\"qa_dropout\":0.1,\"seq_classif_dropout\":0.2,\"sinusoidal_pos_embds\":false,\"tie_weights_\":true,\"transformers_version\":\"4.7.0\",\"vocab_size\":30522}"
	},
	"created_time": 1676074079195,
  "model_group_id": "21en15IBr7hYQeyMk7-W",
	"url": "http://192.168.113.85:8080/public/%e5%9f%ba%e7%a1%80%e7%bb%84%e4%bb%b6%e5%ae%89%e8%a3%85%e5%8c%85/Linux/OpenSearch/%e5%b0%8f%e6%a8%a1%e5%9e%8b/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-onnx.zip"
}
  • 此处返回task id为QVe915IBr7hYQeyMO8Ci,模型id为RVe915IBr7hYQeyMPsAj。
查看注册状态
GET /_plugins/_ml/tasks/QVe915IBr7hYQeyMO8Ci

步骤 1(d):部署模型

POST /_plugins/_ml/models/RVe915IBr7hYQeyMPsAj/_deploy
获取部署状态
GET /_plugins/_ml/models/RVe915IBr7hYQeyMPsAj

第 2 步:使用神经搜索提取数据

创建ingest-pipeline

PUT /_ingest/pipeline/nlp-ingest-pipeline
{
  "description": "An NLP ingest pipeline",
  "processors": [
    {
      "text_embedding": {
        "model_id": "RVe915IBr7hYQeyMPsAj",
        "field_map": {
          "text": "passage_embedding"
        }
      }
    }
  ]
}

新建索引

PUT /my-nlp-index
{
  "settings": {
    "index.knn": true,
    "default_pipeline": "nlp-ingest-pipeline"
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "text"
      },
      "passage_embedding": {
        "type": "knn_vector",
        "dimension": 768,
        "method": {
          "engine": "lucene",
          "space_type": "l2",
          "name": "hnsw",
          "parameters": {}
        }
      },
      "text": {
        "type": "text"
      }
    }
  }
}

导入数据

PUT /my-nlp-index/_doc/1
{
  "text": "A West Virginia university women 's basketball team , officials , and a small gathering of fans are in a West Virginia arena .",
  "id": "4319130149.jpg"
}

PUT /my-nlp-index/_doc/2
{
  "text": "A wild animal races across an uncut field with a minimal amount of trees .",
  "id": "1775029934.jpg"
}

PUT /my-nlp-index/_doc/3
{
  "text": "People line the stands which advertise Freemont 's orthopedics , a cowboy rides a light brown bucking bronco .",
  "id": "2664027527.jpg"
}

PUT /my-nlp-index/_doc/4
{
  "text": "A man who is riding a wild horse in the rodeo is very near to falling off .",
  "id": "4427058951.jpg"
}

PUT /my-nlp-index/_doc/5
{
  "text": "A rodeo cowboy , wearing a cowboy hat , is being thrown off of a wild white horse .",
  "id": "2691147709.jpg"
}

查看doc1

GET /my-nlp-index/_doc/1

关键字搜索

GET /my-nlp-index/_search
{
  "_source": {
    "excludes": [
      "passage_embedding"
    ]
  },
  "query": {
    "match": {
      "text": {
        "query": "wild west"
      }
    }
  }
}

文档 3 未返回,因为它不包含指定的关键字。包含单词rodeo和的文档cowboy得分较低,因为未考虑语义含义。

模型神经搜索
GET /my-nlp-index/_search
{
  "_source": {
    "excludes": [
      "passage_embedding"
    ]
  },
  "query": {
    "neural": {
      "passage_embedding": {
        "query_text": "wild west",
        "model_id": "RVe915IBr7hYQeyMPsAj",
        "k": 5
      }
    }
  }
}

这次,响应不仅包含所有五个文档,而且文档顺序也得到了改善,因为神经搜索考虑了语义含义。

相关推荐
井底哇哇4 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩4 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控5 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1065 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
orion-orion6 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
佛州小李哥6 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
说私域6 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源
程序猿阿伟7 小时前
《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
人工智能·华为·harmonyos